
Linköping Studies in Science and Technology.

Ph.D. Thesis. Dissertation No. 733

Model-Based Head Tracking and

Coding

Jacob Ström

Department of Electrical Engineering

Linköping University, S-581 83 Linköping, Sweden

Linköping 2002

ISBN 91-7373-260-5
ISSN 0345-7524

Printed in Sweden by Linköpings Tryckeri AB (LTAB) 2002.

Abstract

This thesis treats two topics in model-based coding; coding of facial textures
(Part 1) and real-time head tracking (Part 2).

In Part 1, it is shown that a face image can be efficiently coded using a pa-
rameterization based on geometrical normalization followed by Karhunen-Loève
transformation (KLT). The resulting parameterization is shown to be convex,
and can be used for coding: It improves both the measured and perceived qual-
ity of face images compared to only using eye matching normalization followed
by KLT. A block based version of the coder improves the performance dramati-
cally both in terms of quality and complexity. By distributing the bits unevenly
over the face, quality can be further improved. Comparisons with JPEG show
an improvement of 8 dB.

In Part 2, a real-time head tracker that is robust to large rotations is described.
The system uses a large number of automatically selected feature points, con-
strained by dynamically estimated structure. The structure from motion (SfM)
algorithm described by Azarbayejani and Pentland in 1995 is used. The algo-
rithm is first examined for planar objects, and then extended to manage points
not visible in the first frame. The extended SfM method is the basis for the
head tracker: A texture mapped three-dimensional head model is created, and
24 feature points on the surface of this model are automatically selected and
tracked. The trajectories of the tracked feature points are forwarded to the SfM
algorithm, which in turn provides estimates of the location of the feature points
in the next frame. By adaptively updating the texture, the extended SfM algo-
rithm can be used to track points on, e.g., the side of the head, which improves
the range of the tracker. A reinitialization procedure that uses data from the
original initialization is also presented. The complete system runs at full frame
rate (25/30 Hz) and is evaluated on both real and synthetic data.

iii

Acknowledgements

First of all I would like to thank my supervisor Dr. Robert Forchheimer for his
help and hospitality. I am especially grateful for his informal manners, which
have made this process very pleasant. I would also like to thank Prof. Sandy
Pentland for accepting me as a visiting student in his group. The year at MIT
was stimulating, rewarding and most of all fun. A thank to all my colleagues,
especially to Prof. Haibo Li who acted as an extra supervisor to me before he
moved to Ume̊a, and to Jörgen Ahlberg with whom I shared both office and
an interest in facial image processing. My thanks also go to Dr. Tomas Möller
for endless proofreading and to Sumit Basu for stimulating feedback. I would
also like to thank Ericsson, where I have completed the editing of this thesis.
Finally I would like to thank all my supporting friends and family members,
and especially my sisters Anna and Karin and my parents Helge and Eva.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Formulation . 2

1.3 Contributions . 2

1.4 Outline . 4

1.5 Model-Based Video Coding . 5

I Facial Texture Coding 9

2 Frame Based Texture Compression 11

2.1 The Face Image Set . 11

2.2 The Karhunen-Loève Transform 12

2.3 The Structure of the Face Image Set 13

2.4 Geometrical Normalization . 15

2.5 Quality Improvement . 17

2.6 Quantization Results . 18

2.7 Inverse Geometrical Normalization 21

3 A Block-Based Algorithm 23

3.1 Complexity . 23

3.2 Block-Tiling of Eigenspace . 24

3.3 Quantization . 26

3.4 JPEG Comparison . 27

3.5 Size and Shape of the Regions . 28

4 Global Bit Allocation 31

4.1 Global Allocation of Bits . 32

4.2 Possible Improvements . 33

vii

5 Refined Normalization 37

5.1 Errors in Manually Extracted Feature Point Data 37
5.2 Feature Point Refinement as an Optimization Problem 38
5.3 Results . 40
5.4 Complexity . 42
5.5 Gradient Descent — a Possible Improvement 44
5.6 Feature Extraction . 46

II Real-Time Model Based Head Tracking 47

6 Related Work 49

6.1 Head Tracking Based on Optical Flow Methods 49
6.1.1 Planar Parametric Optical Flow 49
6.1.2 Elliptical Optical Flow Model 50
6.1.3 Feed-Back Optical Flow 51
6.1.4 Deformable Models and Optical Flow 53

6.2 Active Appearance Based Techniques 54
6.3 Extended Kalman Filter Based Work 56
6.4 Proposed System . 57

7 SfM for Tracking 61

7.1 Using Structure to Help Tracking 61
7.1.1 Structure from Motion . 63

7.2 SfM using EKF . 64
7.2.1 Camera Model . 65
7.2.2 Structure Representation 65
7.2.3 Translation and Rotation 66
7.2.4 The Kalman Filter . 67

7.3 Multilinear Constraints . 68
7.3.1 Projective Camera Model 69
7.3.2 Derivation of the Fundamental matrix 70
7.3.3 Estimation of F , A and b 71
7.3.4 Image-to-Image Homography 72

8 Degeneracies 75

8.1 Pure Rotation and Multilinear Constraints 75
8.1.1 Avoiding Ill-Conditioning 77

8.2 Planar Objects and Multilinear Constraints 77
8.2.1 Adding Calibration Constraints 78
8.2.2 Known Planar Structure 79

8.3 Pure Rotation and EKF-based SfM 79
8.4 Planar Objects and EKF-based SfM 79

8.4.1 Analysis . 80
8.4.2 Two Views of a Three-Dimensional Object 81
8.4.3 Two Views of a Planar Object 81

8.4.4 Three Views of a Planar Object 82

8.4.5 Several Views of a Planar Object 83

8.4.6 Using the Three-View Filter 86

8.5 Conclusions . 87

9 Disappearing and Appearing Points 89

9.1 Disappearing Points . 89

9.2 Appearing Points . 90

9.2.1 Old Reference Frame . 90

9.2.2 New Reference Frame . 91

9.2.3 Bias Estimation . 91

9.2.4 Two Reference Frames . 92

9.2.5 Implementational Issues 93

9.2.6 Related Work . 93

10 The Tracking System 95

10.1 Initialization . 95

10.1.1 Head Model . 96

10.1.2 Selecting Feature Points 96

10.1.3 Initializing the Kalman Filter 97

10.2 Tracking . 97

10.2.1 Subpixel Refinement . 98

10.3 Estimation of the Covariance Rk 99

10.3.1 Small Error Case . 100

10.3.2 The Shape of Σs . 101

10.3.3 The Magnitude of Σs . 102

10.3.4 Large Error Case . 104

10.3.5 Calculating Σ . 104

10.3.6 Confidence Value Model 104

10.3.7 Hard Decision . 105

10.3.8 Soft Decision . 107

10.4 Texture Update . 108

11 Reinitialization 111

11.1 Background . 111

11.2 Tracking Failure . 112

11.2.1 Convergence Zone . 112

11.2.2 Typical Failures . 113

11.3 Reinitialization . 113

11.3.1 Failure Detection . 113

11.3.2 Skin Color Processing . 113

11.3.3 Template Matching Refinement 114

11.3.4 Restarting the Tracking 115

11.4 Conclusions and Future Work . 116

12 System Evaluation 117

12.1 Performance . 117
12.2 Evaluation on Real Data . 117

12.2.1 Depth Convergence . 118
12.2.2 Improvements due to Estimation of Rk 118
12.2.3 Improvements due to Texture Update 120
12.2.4 Performance of Reinitialization 120

12.3 Evaluation on Synthetic Data . 122
12.4 Coding . 122

13 Conclusions 127

A KLT, PCA and SVD 131

A.1 The Karhunen-Loève Transform 131
A.2 Principal Component Analysis 133
A.3 Calculation of Karhunen-Loève Basis Vectors, PCA 133
A.4 Singular Value Decomposition . 135

B Optical Flow 137

B.1 The Optical Flow Constraint . 139

C Extended Kalman Filtering 141

C.1 Kalman Filtering . 141
C.1.1 Calculating Kk . 142
C.1.2 Summary of Update Equations 142

C.2 Extended Kalman Filtering . 143
C.2.1 Optimality . 144

C.3 Properties of Rk . 144
C.3.1 Subspace Locking . 144
C.3.2 Multi-Dimensional Case 146

D Variance Calculations 149

D.1 Four-Dimensional Case . 149
D.1.1 Maximum Likelihood . 150
D.1.2 Bias . 151

D.2 Two-Dimensional Case . 151
D.2.1 Maximum Likelihood . 152
D.2.2 Bias . 153

Chapter 1

Introduction

1.1 Motivation

This work deals with two topics; compression of facial textures and real-time
head tracking. The starting point for this work has been video telephony for
low bandwidth channels, such as the 56 kbit/s modem channel provided by the
public switched telephone network. One technique that promises video com-
munication over such low bit rates is model-based coding, shown in Figure 1.1.
The encoder extracts the motion of the head (global motion), the motion of the

Figure 1.1: Simplified diagram of a model-based coder.

facial features (local motion) as well as the texture of the head model. These
parameters are sent over the channel to the decoder that uses them to animate
a three-dimensional model of the head. The idea is that the parameters can be
sent with significantly fewer bits than the images themselves. The first part of
this thesis will deal with the efficient transmission of facial textures, whereas
the second part will treat the real-time extraction of the (global) motion of the
head.

2 Introduction

1.2 Problem Formulation

In this thesis, the facial texture compression problem is formulated as:

Definition 1 Given a gray-scale image of a human face and the locations of
certain feature points within that image (such as the position of the left corner
of the mouth), find a representation that is good in terms of coding efficiency,
measured in Peak Signal to Noise Ratio (PSNR) and bits per pixel (bpp).

The study is limited to gray-scale images, but it is assumed that color images
can be treated the same way. The main emphasis is to find a good representa-
tion in terms of coding efficiency, but issues such as computational complexity
and possible quality range will also be treated.

The following problem, called the head tracking problem, will also be addressed:

Definition 2 Given a monocular image sequence of a moving head, estimate
in real-time the three-dimensional pose (position and orientation) of the head,
given that the pose is known in the first image (the head is in a prespecified
position, facing the camera and has a certain size on the screen).

Monocular means that the image sequence is taken from a single video camera,
and not from a stereo camera rig. Video telephony is potentially a low cost
product and should not require expensive two-camera systems. Real-time here
means that the average time to process each image is less than 40 ms (33 ms
for an NTSC system) which means that the system runs at 25 Hz (30 Hz).
The desired output is three-dimensional pose, i.e., the simple two-dimensional
position of the head in the image is not sufficient, but the three-dimensional
coordinates and angles of the head should be estimated. This is needed for
correct animation of the computer model. The pose is assumed to be known in
the first image, hence it is a tracking system that is considered, rather than a
face finding system.

1.3 Contributions

The first part of this thesis deals with the compression of facial texture images
using the Karhunen-Loève transform (KLT, also called principal component
analysis, PCA, see Appendix A). The contributions are:

• The usage of geometrical normalization for face image coding.

• The usage of modular eigenspaces for face image coding.

• Global bit allocation for face images.

1.3 Contributions 3

The two first results were presented in an international workshop paper [63], and
all three items were included in the licentiate thesis1 of the author [64]. Since
then, the analysis and representation of face images using PCA have received
much attention due to the stellar work on active appearance models by Tim
Cootes et al. [17]. This can make the results in the first part of the thesis look
dated, especially Chapter 5 which deals with automatic extraction and refine-
ment of facial feature locations.

The second part of the thesis deals with head tracking. The proposed sys-
tem is illustrated in Figure 1.2. It starts with an initialization procedure, (init

Figure 1.2: Proposed head tracking system.

box in Figure 1.2), which assumes that the head is in a prespecified starting
position, roughly covering a projected head model on the screen, and facing the
camera. In the tracking block the head is tracked. The SfM (structure from mo-
tion) algorithm and the texture update scheme are vital ingredients here. They
are described in Chapters 7 and 10 respectively. The algorithm then decides
whether the tracking was successful (the track ok diamond). If so, it continues
tracking at full frame rate (25/30 Hz). Otherwise, the reinitialization procedure
is invoked (reinit) before the tracking is continued.

There are four contributions in this part.

• The system itself is a major contribution. The basic parts of it were
published at a workshop at ICCV 1999 [66].

• Many SfM algorithms break down for planar surfaces. Since the points on
the face can be close to coplanar, Chapter 8 treats how the well-known
algorithm by Azarbayejani and Pentland [8] behaves in this case. This has
previously not been reported in the literature. The planar case is found to
converge to the correct solution, albeit at a slower pace and not quite as
reliably as in the general case. Tentative results have been published by
the author at a national conference [69] but only for the noise free case.

1The licentiate thesis is a Swedish intermediate degree between M.Sc. and Ph.D.

4 Introduction

• The method of adding feature points to the Structure from Motion algo-
rithm of [8] that is described in Chapter 9 is novel. This makes it possible
to do texture updates on the side of the head and to track points on, for
instance, the ear. This greatly extends the range of the tracker, as shown
in Chapter 12. The method is presented in a technical report [67] but is
otherwise unpublished.

• The reinitialization system component presented in Chapter 11 is novel. It
was published at the refereed international conference EuroImage ICAV3D
2001 [68].

Part of the work on head tracking was carried out when the author was a visit-
ing student in Alex Pentland’s group at the MIT Media Lab in Cambridge, MA.

Outside the scope of this thesis, the author has also produced a journal pa-
per on combined lossless/lossy coding for medical images [65]. This work was
done while at P. Cosman’s group at University of California, San Diego.

1.4 Outline

The thesis is arranged as follows: The rest of this chapter is devoted to a brief
introduction to image and video coding in general, and to model-based coding
in particular.

The first part of the thesis treats facial texture compression, and starts with a
chapter that discusses how face images can be coded using the Karhunen-Loève
transform. This chapter also introduces a geometrical normalization step and
investigates how this step can improve the coding. Chapter 3 presents a way
to enhance image quality significantly, and at the same time lower complexity,
by tiling the image into blocks prior to the Karhunen-Loève transform. The
resulting method is compared to jpeg. The following chapter discusses the
benefits of distributing the bits non-uniformly among the blocks. The resulting
improvement in quality is measured. In Chapter 5, an automatic way to refine
the feature point positions used by the geometrical normalization is treated.
Complexity and gain in quality are discussed.

The second part of the thesis deals with head tracking, and starts with an
overview of the different head trackers in the literature and how they work. It
ends with a motivation for the proposed solution of the head tracking problem.
Since the Structure from Motion processing is a vital part of the system, the
following chapter treats this problem, first with the help of extended Kalman
filtering and then using multilinear constraints. The methods are compared for
degenerate motion and degenerate objects in Chapter 8. The Kalman technique
is then extended in Chapter 9 so that it can handle new points that are not vis-
ible in the first frame. Chapter 10 presents the tracking algorithm, including
details on how the confidence of the point matchings is estimated and fed into

1.5 Model-Based Video Coding 5

the Kalman filter. This is followed by a chapter on how to reinitialize the tracker
when it fails. In Chapter 12, the complete system is evaluated on both real and
synthetic data. The last chapter contains a conclusion of both Part I and Part II.

Appendix A is included to quickly update the reader on the theory behind
and the relations between the Karhunen-Loève transform, principal component
analysis and singular value decomposition. Appendix B goes through the theory
of optical flow that is used in Chapter 6. Appendix C contains an introduction to
Kalman filtering and its extension to the non-linear case. Finally, Appendix D
goes through some of the proofs of Chapter 10.

1.5 Model-Based Video Coding

A standard TV set deceives the eye to perceive motion by displaying a large
number of static images each second. This results in huge amounts of data.
The raw data rate of the PAL TV signal exceeds 230 Mbit/s, about 4100 times
more than what is currently possible to send over a normal pstn modem chan-
nel (56 kbit/s). The objective of video coding is to reduce the number of bits
needed to transmit the image sequence. Currently, hybrid coding is the most
widely used technique for video coding, named after the hybrid combination
of motion compensated predictive coding and discrete cosine transform. One
example is digital broadcast TV, where the PAL signal mentioned above is sent
using MPEG-2, which is based on hybrid coding. The rate is reduced to around
4 Mbits/s, a compression of about 60 times.

Although the compression performance of hybrid coding is impressive, the bit
rate produced is still about 70 times larger than what can be sent over a tele-
phone modem. As pointed out by Li et al. [41], it is generally impossible to
code a full TV signal with high quality at such low rates. The contents of a
video telephony sequence however, are known roughly à priori; such a sequence
is likely to contain a head-and-shoulder shot of a talking person. This informa-
tion can be used to enhance the compression efficiency of the coder.

Model-based coding takes advantage of the fact that the image to encode is a
two-dimensional projection of a three-dimensional object. Among other model-
based techniques, semantic coding assumes that the image depicts a specific
three-dimensional object, typically the head-and-shoulder part of a person. (For
other model-based techniques, see [51].) The coder tries to describe the image
sequence by animating a computer model that resembles the person in the scene.
By transmitting the animation parameters instead of the images themselves, ex-
tremely low bit rates can be achieved. Different studies [3, 41] show that the
motion information needed to animate a human face can be transmitted at a
rate of about 30 bits per frame, which at 25 frames per second requires a channel
capacity of 750 bits per second. This is about 1.3% of the 56 kbit/s capacity
and a proof of concept of video telephony for modem type channels.

6 Introduction

Figure 1.3 shows the basic idea of a model-based coder. The top half (above
the channel box) represents the encoder. In the first image, a wire frame model
is adapted to the face, and the texture of the face is also extracted. These two
pieces of information constitute the parameter vector ϕ in Figure 1.3. Since ϕ
will not change during the course of the image sequence, it needs only be sent
once. During the sequence, the head will rotate and translate (global motion)
and the face will deform, e.g., when the person smiles (local motion). Therefore,
motion parameters (animation parameters) φk are extracted for each frame k,
and sent over the channel. The decoder is illustrated in the lower part of Fig-
ure 1.3. The information from the two parameter vectors ϕ and φk is used to
render frame k. Note that all the parts of the image for which there is no model
are absent — for example the background and the inside of the mouth.

A scheme such as the one described above was presented in 1983 [23] and refined
in 1984 [24] by Forchheimer et al., but suffered from the inability to portray re-
alistically the skin and other parts of the face since the model was made up
of single colored polygons (see left part of Figure 1.4). In 1987 Welsh [74] and
Aizawa et al. [5] introduced texture mapping, which profoundly improved re-
alism. The development of computer graphics has been very rapid and today
realistic rendering of such a complex object as a head can be performed by in-
expensive graphics cards for the PC and even by video game platforms. Recent
work in MPEG-4 [33] has put forward a standard way of representing the ani-
mation parameters. Thus it is fair to say that the decoder part of model-based
coding is more or less solved. On the encoder part however, several components
can be identified.

• Face detection is needed in order to know if there is a face in the image
and where it is located.

• Model initialization places the facial model correctly in three dimensions
and possibly also changes the shape of the three-dimensional model in
order to make it conform with the geometry of the face.

• Facial texture coding is needed to compress and send the texture of the
face to the decoder.

• Head tracking (or global motion tracking) makes sure that the model mim-
ics the three-dimensional rigid body motion of the head.

• Facial gestures tracking (or local motion tracking) extracts facial motion
such as smiles and eye blinks.

• Model refinement continuously refines the three-dimensional model by
adding texture and changing the shape.

The goal of this thesis is to solve the problem of facial texture compression and
the problem of head tracking. The methods that have been developed to do

1.5 Model-Based Video Coding 7

shape
 texture

φt1 φt2 φt3 φt3

shape and texture
parameters

only sent once

mesh motion parameters
sent each frame

φt1 φt2 φt3 φt4ϕ

Channel

ϕ

Figure 1.3: Basic idea of a model-based coding system. The image is analyzed, and the
shape and texture parameters are sent only once. For each frame, motion parameters
are sent that tell the decoder how to animate the face.

8 Introduction

Figure 1.4: Texture mapping significantly improves the photorealism of the decoded
image in model-based coding. Left: without texture mapping. Middle: with texture
mapping. Right: the texture.

this, however, touch upon several of the other above-mentioned problems. For
instance, the reinitialization method in Chapter 11 solves the problem of face
detection and model initialization under the assumption that a good model of
the head already exists. The adaptive texture update mentioned in Chapter 10
and the depth estimation of the feature points in Chapter 7 are examples of
model refinement.

Part I

Facial Texture Coding

Chapter 2

Frame Based Texture

Compression

2.1 The Face Image Set

We will regard an image x[i, j] supported on, say [512×512] pixels, as a vector x̄
in an n = 262144 dimensional vector space called image space. Each face image
corresponds to a point in image space, and the set of all possible face images
will form some region in image space, called the face image set. If this set is a
convex sub-region of low dimension, a small number of basis vectors (φk)M

1 will
suffice to represent well any face image x̄ by

x̄ ≈ x̂M =

M
∑

k=1

αkφ̄k. (2.1)

Then the basis vectors (φ̄)M
1 can be stored in both the encoder and the decoder,

and to transmit the face image, only the M coefficients (αk)M
1 need to be sent,

instead of n pixels. If the rate is measured as the number of values that are
sent, then since M ≪ n, a considerable compression has taken place. If the
φ̄ks are made orthonormal, it will also be easy to calculate the coefficients
αk = φ̄T

k x̄. The system is shown in Figure 2.1. Note here that the database, i.e.,
the set of basis vectors (φ̄k)M

1 , is general for all face images and can therefore
be prestored in both the encoder and the decoder; it need not be transmitted.
The two interesting questions are now: Is the face region set convex and of low
dimensionality, and if so, how does one find a suitable database of basis vectors
(φ̄k)M

1 ? These two questions will be answered in the following two sections, in
reversed order.

12 Frame Based Texture Compression

x
_

...
φ φ ... φ1 2 M

x
_ α α ... α

1 2 M

...
φ φ ... φ1 2 M

kα kφ x^ M

x^ M

fixed database

encoder

k k

_

fixed database

decoder

= Σ
_

k=1

M

transmission

α = φ T

Figure 2.1: Structure of a face image coding system for very low bit rates: The
inner product is formed between the image and the basis vectors φ̄k, yielding the M

coefficients (αk)M
1 , which are transmitted. Since M is much smaller than the number

of pixels, the result is a considerable compression. The decoder linearly combines the
basis vectors φ̄k with the αk as weights. The result is the reconstructed image x̂M .

2.2 The Karhunen-Loève Transform

In Appendix A, the image is treated as a vector valued random variable. Using
the Karhunen-Loève transform, it is possible to obtain a set of basis vectors
(ϕ̄k)n

1 with the attractive property of minimizing the expected mean-square er-
ror1 (mse): If x̄ is expressed in this basis, x̄ =

∑n
k=1 αkϕ̄k, the error E{|x̄ −

x̂M |2} due to the truncation x̂M =
∑M

k=1 αkϕ̄k of the sum is smaller than (or
equal to) the error achieved with any other orthonormal set of basis vectors
(φ̄k)n

1 , for all truncations 0 ≤ M ≤ n. This should make (ϕ̄k)M
1 suitable as the

basis vectors in Equation 2.1.

The ϕ̄ks can be calculated using principal component analysis (pca), which
in essence is an eigenvalue decomposition of the covariance matrix of the pixels
in the image. The covariance matrix is estimated from a large collection of
images, called the training set. Since this training set is finite, the covariance
matrix, and hence the basis vectors derived from it, will be approximate. To
indicate this, the basis vectors are written ϕ̂k rather than ϕ̄k. The difference
between theory and practice is illustrated in Figure 2.2. The basis vectors ϕ̄k

(and their approximations ϕ̂k) can be called either principal components, eigen-
vectors, eigenimages or eigenfaces. Throughout this thesis they will be called
eigenimages or, more generally, basis vectors. Note that if there are N images
in the training set, it is only possible to estimate N basis vectors (ϕ̂)N

1 . Since
N < n, these vectors will not span the entire image space. (The term basis
vector is thus somewhat inaccurate but will still be used in this thesis.) Still,
if the face image set is convex and of sufficiently low dimension, all face images
will be well represented. Note also that the theory in Appendix A is valid under
the assumption that the images have zero mean. This is achieved by calculating
the average image of the training set and subtracting this average image from
all the images prior to the calculation of the basis vectors.

1This means that if the rate is measured as the number of values sent, then the Karhunen-
Loève transform is optimal in a rate-distortion sense.

2.3 The Structure of the Face Image Set 13

Theory:

X̄ → CX̄ → (ϕ̄k)n
1 → (ϕ̄k)M

1

random covariance basis data
vector matrix vectors base

Practice:

(x̄j)
N
1 → ĈX̄ → (ϕ̂k)N

1 → (ϕ̂k)M
1

training covariance basis data
set matrix estimate vectors base

Figure 2.2: The difference in notation to distinguish theory from practice.

2.3 The Structure of the Face Image Set

As pointed out by Bichsel and Pentland [12], large translations or scale-changes
make the face image set highly non-convex and hence not simply shaped. There-
fore, previous efforts to encode face images with eigenimages have included a
normalization step that is performed on all images in the training set and on
the image to be encoded. (Additional information must then be transmitted
to the decoder to enable it to undo this normalization before displaying the
image.) Kirby and Sirovich, who presented the first work [39] on the usage of
Karhunen-Loève techniques for face image coding, normalized their images by
fixing the eyes to a template. This will be referred to as eye matching nor-
malization. Moghaddam and Pentland, who used the technique for automatic
model-based coding of face images [47], used an affine coordinate transform,
(referred to here as affine normalization), allowing for the additional fixing of a
third point. However, this section will show that even after normalization with
eye matching, the face image set will be non-convex, and the same is true for
the images after affine normalization using analogous reasoning.

In the example in Figure 2.3 we have chosen to fix the eyes. Since the eye-
mouth distance varies among people, it will be possible to find two images, x̄A

and x̄B , in the normalized face image set with the mouths at different posi-
tions. If the normalized face image set were convex, all convex combinations
x̄C = αx̄A + (1 − α)x̄B , α ∈ [0, 1], (i.e., all points on the dotted line in the
diagram in Figure 2.3) must belong to the set. But letting α = 1

2 means that
the image x̄C would result in an image with two mouths, which is clearly not
a face, and thus the set cannot be convex. Affine normalization allows for the
fixation of a third point, and will consequently cope with different ratios be-
tween eye-eye distances and eye-mouth distances. However, the ratio between
the eye-mouth distance and the eye-nose distance also varies among people, and
this cannot be compensated for by an affine normalization, since it involves a
fourth point. Hence, the face image set after affine normalization will also be
non-convex.

14 Frame Based Texture Compression

x2 x1

x262144
face image set
after eye matching
normalization

x
A

x
C

x
B

image space

1
2

x̄A

+ 1
2

x̄B

=

x̄C

Figure 2.3: In the face image set after eye matching normalization, depicted in the top
diagram, two images, x̄A and x̄B, with different eye-mouth distances are found. If the
face image set is convex, then all convex combinations x̄C = αx̄A + (1 − α)x̄B , α ∈
[0, 1], (corresponding to all points on the dotted line), must belong to the set. But
letting α = 1

2
will result in an image x̄C that is not a face (since it has two mouths, as

illustrated in the lower part of the figure). Thus this convex combination is not part of
the set and the set cannot be convex.

2.4 Geometrical Normalization 15

The non-convexity implies that a linear combination, such as the one in Equa-
tion (2.1), cannot represent the data satisfactorily. Either it will not be able to
represent both small and large eye-mouth distances, or the base will be over-
complete, capable of representing two-mouthed creatures that do not exist. Dif-
ferent facial expressions, such as eye blinks and open/closed mouths, will reveal
the same kind of sub-optimality in the representation.

This problem can also be illustrated as follows; since, according to Appendix A,
each basis vector is a linear combination of the images in the training set, each
small area of the face image is coded as a linear combination of what is in the
same area in the images of the training set. Typically, a specific part of the
face, such as the lower lip, should correlate stronger with the lower lips of the
images in the training set than with other parts of those images. This calls for
an alignment procedure that is more powerful than the one in Figure 2.3, where
the lower lip in image A is in the same spot as the cheek in image B.

2.4 Geometrical Normalization

An approach for a refined normalization can be seen in Figure 2.4. In the origi-

Figure 2.4: In the original image (first image), a triangular mesh is fitted to feature
points in the face (second image). The triangle-vertices are then moved to predeter-
mined positions, and the texture is mapped accordingly (third image). The result is a
geometrically normalized image (fourth image).

nal image (first image), a triangular mesh (candide [54]) is fitted to the face by
manually moving each vertex in the candide-mesh to a specific feature point
in the face (second image). Examples of such feature points include the corners
of the eyes, the nostrils etc, but also more loosely defined points such as points
on the hairline or on the outline of the face. Three vertices (marked with boxes
in the second image) are not fitted to any particular points in the face, but
are positioned roughly in the center of the surrounding triangles. The manual
operator also makes sure that the fitted wireframe has the same topology as the
original candide-mesh. Next, each triangle is texture mapped, using the part
of the image that is directly underneath the triangle as texture. Each vertex
is then moved to a predetermined position, namely the average position of this

16 Frame Based Texture Compression

1
2

ȳA

+ 1
2

ȳB

=

ȳC

Figure 2.5: ȳA and ȳB are the geometrically normalized versions of the images x̄A

and x̄B in Figure 2.3. Note that the image ȳC = 1

2
ȳA + 1

2
ȳB is a valid face image.

vertex over a large set of images (third image). This changes the shape of the
triangles, and their texture is therefore remapped using nearest neighbor texture
mapping. The result is a geometrically normalized image (fourth image), where
each facial feature has a predetermined position. Henceforth, this normalization
method is called geometrical normalization since it normalizes the geometrical
distances (e.g., nose/mouth distance) in a face image. In fact, the geometri-
cal normalization normalizes (fully or to some extent) differences due to three
different things: Firstly, it normalizes global motion, such as head rotation,
translation and scaling. Secondly, it normalizes local motion due to facial ex-
pression etc, so that the face will look neutral after the normalization. Thirdly,
it also normalizes the geometrical differences between individuals; some people
have a short distance between their eyes and their nose, others have a shorter
upper lip instead but the same length of the face. After the normalization, they
will all have the same geometry.

The following notation will be used: x̄ will denote an image before normal-
ization and θ̄ will denote the vector containing the coordinates of the feature
points in x̄. The mapping of an image x̄ to the geometrically normalized version
ȳ will be denoted ȳ = GN(x̄, θ̄). The Karhunen-Loève transform will thus be

performed on the vector ȳ; ŷ =
∑M

k=1 αkϕ̂k, where αk = ȳT ϕ̂k.

Figure 2.5 shows geometrically normalized versions ȳA and ȳB of the images
x̄A and x̄B from Figure 2.3. The open mouth of image x̄B is now closed, which
makes it more sensible to superimpose the two mouths2. Note how the image
ȳC = 1

2 ȳA + 1
2 ȳB is now a valid face image, and that the convexity condition

then seems to hold. This experiment has been repeated 100 times for differ-
ent images, each time resulting in a valid face image. Thus there is reason to
believe that the face image set is more convex after geometrical normalization
than after eye matching, and that it will be easier to find linear basis functions

2The interior of the mouth is thus not coded. However, it is possible to encode the interior
of the mouth with a separate set of basis vectors.

2.5 Quality Improvement 17

that can well represent images from this set. The top row in Figure 2.6 shows
five images from the training set after they have been geometrically normalized.
The bottom row shows the average image followed by the first four eigenfaces.

Figure 2.6: Top: some images in the training set (geometrically normalized). Bottom:
the mean image (left) followed by the first four eigenfaces.

2.5 Quality Improvement

If the geometrical normalization step makes it easier to find basis vectors that
can span the face image set, it should be possible to measure an increase in
quality in the encoded images. Of course, the geometrical normalization also
involves a rate penalty for the transmission of the feature point data that is
needed to undo the normalization in the decoder. Whether the rate penalty is
worth the increase in quality is discussed in Section 2.6.

To evaluate how much can be gained by using geometrical normalization in-
stead of eye matching normalization, the following experiment was conducted:
An original image was first geometrically normalized, then coded as a linear
combination of M = 198 eigenimages calculated from a geometrically normal-
ized training set. (The image to be coded was not part of the training set.) For
simplicity, the size of the database, M , was equal to the size of the training set,
N , and the coefficients were not quantized. Finally, the coded image was in-
versely normalized and compared to the original image by calculating the Peak
Signal to Noise Ratio, (psnr = 10 log(2552/mse)). The image was then coded
a second time using the same training set, this time with eye matching normal-
ization replacing geometrical normalization in all steps, resulting in a second
psnr value. The gain from using geometrical normalization could be calculated

18 Frame Based Texture Compression

by forming the difference between the two psnr measures. This process was re-
peated for a set of 100 different images, and the result can be seen in Figure 2.7.
The average gain in psnr is rather modest (only 0.5 dB), but the distortion in

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

2.5

Image number

D
iff

er
en

ce
 in

 P
S

N
R

Figure 2.7: The gain in psnr from using geometrical normalization as opposed to eye
matching normalization, measured over a set of 100 images.

the geometrical normalization case is different; the facial features such as the
nostrils and the mouth are of higher contrast, and typically the ringing around
edges such as the face contour and the mouth is diminished. The hair line is less
distinct, but since this is not of such vital perceptual value the result indicate
a clear increase in visual quality despite the modest gain in psnr as shown in
Figure 2.8. The original image (left) is coded using eye matching normalization
(middle) and geometrical normalization (right). The geometrical normalization
improves this image by about 0.8 dB, but the difference is perceptually visible
when comparing, for instance, the nose and the mouth regions.

2.6 Quantization Results

To investigate whether this quality increase is worth the extra cost of sending the
feature points needed for the geometrical normalization, quantized data must
be considered. Figure 2.9 shows examples of three images that are represented
with quantized coefficients. The original images in the first column (not part
of the training set) are geometrically normalized (second column) and then
projected onto a database of M = 77 eigenfaces calculated from a training
set of N = 200 images. Each coefficient is divided by its standard deviation
(the square-root of the corresponding eigenvalue from the KL calculation) and

2.6 Quantization Results 19

Figure 2.8: The original image to the left (number two in the diagram in Figure 2.7)
is coded using eye matching normalization (middle) and geometrical normalization
(right). The right image is 0.8 dB higher in psnr. Note the differences in the distortion
of the nose and mouth regions.

then scalar quantized, using a Lloyd-Max quantizer for a Gaussian source. The
number of bits allocated to a specific coefficient is chosen according to

bk = b + log2

σk

ρ
, (2.2)

where bk is the number of bits to quantize coefficient αk, b is the average number
of bits per coefficient, σk is the square-root of the corresponding eigenvalue and
ρ is the geometrical mean of all σks. The bit assignment vector is processed in a
number of steps to remove irregularities such as negative bit assignments, single
bits, etc. The same procedure is conducted in the decoder, which is possible
since the eigenvalues are prestored in the decoder. In the example in Figure 2.9,
300 bits were distributed among the 200 coefficients. For this rate, only 77 of the
200 coefficients were assigned bits, which means that the size of the database,
M , equals 77. Another 154 10-bit integers of feature point data (1540 bits) are
sent to perform the inverse geometrical normalization. The images in the fourth
column can thus be represented with a total of 1840 bits. At a first glance, it
seems that the expected quality gain of 0.5 dB is not worth the extra 1490 bits3

needed for the improved normalization, but there are several reasons why the
situation in fact favors geometrical normalization. First, in the current scheme,
no effort has been made to compress the feature point data; 1490 bits should
be considered to be an upper bound rather than a realistic estimate of what
is required to send the data. Second, the feature point data can be derived
from the three-dimensional shape of the head and the motion data. The three-

3The positions of the eyes would require four 10-bit integers = 50 bits. Extra bits needed to
replace eye matching normalization with geometrical normalization are thus 1540−50 = 1490
bits.

20 Frame Based Texture Compression

Figure 2.9: Examples of quantized data: The original images (first column), not in-
cluded in the training set) are geometrically normalized (second column), these textures
are then coded using N = 200, M = 77 at 300 bits (third column). By performing in-
verse geometrical normalization, the fourth column is obtained. Another 1540 bits are
needed for this step. psnr are (from top to bottom) 31 dB, 29 dB and 29 dB, rates
0.018 bpp, 0.015 bpp and 0.016 bpp, respectively, counting only foreground pixels. To-
tal size for each of the three images is 1840 bits, or 230 bytes, which is about half of
the number of letters in this figure text.

2.7 Inverse Geometrical Normalization 21

dimensional shape data will not change over time and need only be sent once; its
rate penalty can thus be neglected. The motion information can be transmitted
losslessly at around 400 bits per frame [3], and at lossy quality at such low rates
as 30 bits per frame.
Third, and perhaps most important, if this algorithm is to be incorporated in a
model-based coding scheme, it will be used for face texture compression rather
than face image compression. Only the texture map of the triangles needs to
be transmitted, a task that is fulfilled already in the third image in Figure 2.9.
This means that facial texture coding can be added to a model-based coding
scheme at an extra cost of only 300 bits per texture. Henceforth, the coding of
texture plus geometry information will be called face image coding while coding
of only the texture will be called face texture coding.

2.7 Inverse Geometrical Normalization

On the decoder side, the geometrically normalized image ȳ is reconstructed as
a linear combination of basis vectors ϕ̂k using the transmitted coefficients as
weights: ŷ =

∑M
k=1 αkϕ̂k. The image is then inversely geometrically normal-

ized, going through the steps of Figure 2.4 in reverse order. It is important to
point out that the normalization step itself is likely to introduce errors in the
image. This is because some of the triangles are shrunk during the forward geo-
metrical normalization. The information that is lost hereby cannot be regained
in the inverse geometrical normalization. To indicate this, the inverse geo-
metrical normalization mapping is denoted GN+(ȳ, θ̄) rather than GN−1(ȳ, θ̄).
The error introduced by the geometrical normalization is a lower bound on
the total error of the system. In order to estimate this lower bound, the error
ε2 = ‖x̄k−GN+(GN(x̄k, θ̄), θ̄)‖2 has been measured for a set of 50 images. The
resulting mean-square error was 1.3346, which is equal to an image quality of
around 47 dB. It should thus be of little use to code a normalized image ȳ to a
quality higher than this. The expected mean-square error introduced by the eye
matching normalization was also measured for 50 images, to a value of 0.7020,
which is equal to a psnr of around 50 dB.

The texture mapping technique used both in the geometrical normalization and
in the eye matching normalization in this thesis is based on a simple nearest
neighbor technique. This yields rather crude results and can rather easily be
improved by, e.g., bilinear interpolation. The mse would then probably decrease
significantly but the principle would not change — the expected error would still
be larger than zero.

22 Frame Based Texture Compression

Chapter 3

A Block-Based Algorithm

In this chapter, we will argue that if high quality levels are to be supported, the
full frame basis vector strategy is too high in complexity to be practical.

This complexity problem is addressed by a block-based algorithm where each
block is described with its own set of basis vectors. The basis vectors are ob-
tained through a separate pca in each block. This technique has previously
been used for face recognition by Pentland et al. [52]. It was first described for
face texture representation by the author in 1997 [63] and later by Jebara et al.
[36], who also used it for extracting depth information. The eigenspaces found
by the different pcas are called modular eigenspaces.

The use of modular eigenspaces to represent the image results in a decrease
in storage demands for the database and a simultaneous increase in image qual-
ity. The technique proposed in this chapter is compared to jpeg, showing an
improvement of 8 dB over this coder.

3.1 Complexity

The usefulness of any image compression system is dependent upon the capa-
bility to provide a range of different quality levels. The average quality of the
100 images coded with geometrical normalization in the diagram in Figure 2.7
was 30.5 dB. Admittedly, the scope of a coder unable to compress images to
higher quality levels than this is rather limited. The upper bound on the quality
imposed by the geometrical normalization (see Section 2.7) is at about 47 dB,
so there is headroom for another 18 dB of quality enhancement.

One way to enhance the quality is to increase the size of the training set, N ,
while holding the size of the database, M , constant. The basis vectors (ϕ̂k)M

1

will then become closer to the optimal (ϕ̄k)M
1 , with an increase in expected

psnr as a result. By increasing N it is possible to augment the quality without

24 A Block-Based Algorithm

penalizing either the rate or the complexity of the encoder/decoder. (The time
needed to calculate the database is of course affected — it grows proportionately
to N2n, but this operation only has to be performed once and is therefore not
considered.) As long as there is a significant quality difference in the coding
results of images from inside and outside the training set, quality can be raised
by increasing N , but eventually a point will be reached when increasing N will
not affect the M basis vectors in the database much, and thus only result in a
negligible increase in quality.

Another way to augment the quality is to increase the size of the database,
M . This way, more degrees of freedom are given to the image representation
and a better fit to the original image is possible. However, complexity problems
arise when M is increased. For instance, a system with M = 5000 coefficients
will (for [512 × 512] pixel images) require over a Gigabyte of memory only to
store the basis vectors. To code (or decode) a single image requires 1.2 · 109

floating point operations and, arguably worse, the same number of memory
transfers. Even if such a workload may not be impractical with future techno-
logy, the complexity is still disproportionately huge compared to other parts of
the model-based coding scheme. Moreover, the size of the database, M , cannot
be larger than the size of the training set, N , which in practice is a problem
since training data is currently obtained manually and is thus scarce.

3.2 Block-Tiling of Eigenspace

Roughly speaking, the expected image quality is determined by the number of
coefficients used to describe the image. The time to compute these coefficients
is directly proportional to the size of the support1 of the corresponding basis
vectors. Thus, reducing the support of the basis vectors will lower complexity
for a certain quality level. This can be done by tiling the image to encode ȳ into
disjoint blocks (ȳj)B

j=1 as seen in Figure 3.1. Each block ȳj can then be seen as
an nb-dimensional vector, where nb equals the number of pixels inside the block
(e.g., 32 × 32 = 1024 pixels as in the example in Figure 3.1). In analogy with
Equation 2.1 in the frame based case, each vector ȳj representing a block can
be approximated by a linear combination of M basis vectors,

ȳj ≈ ŷj =
M
∑

i=1

αj
i ϕ̄

j
i . (3.1)

An important note to make here is that the basis vectors ϕ̄j
i depend on the

block position j, i.e., a different set of basis vectors is used for the coding of
each block. Hence, the block marked with a rectangle in the left eye-region in
Figure 3.1 will be described using a different set of basis vectors than the block
from the mouth-region marked with a dashed rectangle.

1In this context, the support of a vector is the set of all elements in the vector that can be
non-zero.

3.2 Block-Tiling of Eigenspace 25

Figure 3.1: All the images in the training set are tiled into blocks, and a separate pca

is performed at each block-position. Thus, a special set of basis vectors is obtained for
the eye block marked with a rectangle, and a different set is obtained for the mouth
block marked with a dashed rectangle.

The basis vectors ϕ̄j
i can be obtained by performing principal component anal-

ysis on blocks at this particular position in the images of the training set. As in
the full frame case, the finite size of the training set will mean that the calcu-
lated basis vectors will only be an approximation of the true Karhunen-Loève
basis vectors. They will therefore be denoted by ϕ̂j

i .

The idea of performing a principal component analysis on only a part of the
image was introduced by Pentland et al. [52] for face recognition purposes. In
its current form, it was first described for coding purposes by the author [63].

The technique has several advantages compared to the full frame case. Firstly,
as already mentioned, the complexity is lowered, which will be investigated in
more detail shortly. Secondly, since the blocks are disjoint, the training set used
to find the basis vectors for one block can be reused for the next block. This
can be very important in practice where training data is often scarce. Thirdly,
as pointed out by Jebara et al. [36], the modular eigenspace can be a superset
of the single eigenspace. This is illustrated in Figure 3.2: Here the training set
consists of two faces, one with open eyes and mustache, and another with closed
eyes and no mustache. It is clear that it is impossible to construct a face with
closed eyes and mustache as a linear combination of these two faces. With a
modular eigenspace, on the other hand, this is possible.

Let ff be the number of floating point operations2 needed to calculate the KL
coefficients {αk}M

1 in the full frame case. Each coefficient αk is obtained by cal-
culating the inner product between the original image ȳ and the corresponding

2One floating point operation is here defined as either a multiplication or an addition.

26 A Block-Based Algorithm

training
sample #1

training
sample #2

modular
eigenspace

Figure 3.2: Using a block-based approach, it is possible to create combinations of
textures that are not present in the training set.

basis vector ϕ̂k, αk = 〈ȳ | ϕ̂k〉. For each pixel in the inner product, one multi-
plication and one addition is performed. If w and h are the width and height of
the image, then ff = 2whM , since M such inner products need to be formed.
Analogously, let mf denote storage complexity for the full frame case. Since M
basis vectors of size wh need to be stored, this results in mf = whM . Now the
same sort of analysis is performed in the block-based case. Each block ȳj is to be
described by a linear combination of M basis vectors, ȳj =

∑M
k=1 αj

kϕ̂j
k, where

ϕ̂j
k is a [wb × hb] sized block. Each coefficient αj

k is obtained by computing the

inner product
〈

ȳj | ϕ̂j
k

〉

which involves 2wbhb floating point operations. The

total number of floating point operations is thus fb = 2wbhbBM , where B is
the number of blocks in the image. In the same manner, the storage complexity
for the block-based case is mb = wbhbBM . Since the tiling is non-overlapping,
the number of pixels is independent of the tiling, and wh thus equals wbhbB.
Hence, for a certain M , ff = fb and mf = mb. However, as will be demon-
strated shortly, for a certain quality level, the block-based scheme will need a
smaller M in order to reach the same quality level. For this reason, complexity
is reduced.

3.3 Quantization

After the Karhunen-Loève transformation has been performed on the block,
M coefficients are obtained. The standard deviation σ

α
j

i
for each coefficient is

estimated off-line using the square root of the corresponding eigenvalue. Each
coefficient αj

i is then divided by this estimate in order to normalize it. It is then
quantized with a Lloyd-Max quantizer that is optimized for a Gaussian source.
Each block gets the same number of bits to distribute among the coefficients of
the block. However, inside a block bits are distributed non-uniformly according
to Equation 2.2. The image is decoded using the C-like pseudocode in Figure
3.3. Here, nextbitsINT(a,b) is a function that fetches an (unsigned) integer
of b bits from the bit stream a.

Figure 3.4 shows an example of an image coded with block-tiling. The original
image to the left (not included in the training set) is geometrically normalized
and coded with the block-tile approach using N = 200, M = 24. Note that even

3.4 JPEG Comparison 27

b = bit_budget / nbr_of_blocks;
a = get_allocation_vector(b);
for(each block j)
{

for(each pixel k in reconstructed block)
block[j,k] = meanblock[j,k];

for(i=1 to M)
{

quant_tab = quanttables[a[i]];
c = quant_tab[nextbitsINT(stream,a[i])];
c = c * sqrt(eigenvalue[j,i]);
for(each pixel k in the block)

block[j,k] = block[j,k] + c * eigenimage[j,k,i];
}

}

Figure 3.3: The decoding algorithm (pseudocode).

Figure 3.4: The original image (left) is geometrically normalized, coded block-wise
with M=24 coefficients per block, quantized with about 61 bits per block, and inverse
geometrically normalized resulting in the right image. psnr = 36 dB, 165 blocks of
[32 × 32] pixels, total size = 11585 bits including information for geometrical normal-
ization.

though the quality has improved from 28 dB in the frame based case (Figure 2.9)
to 36 dB, the size of the database which determines complexity has lowered from
M = 77 (19 Mbytes) to M = 24 (6 Mbytes).

3.4 JPEG Comparison

The image quality is now in a range where comparison to JPEG [73] is worth-
while. To avoid edge effects that would hamper the JPEG method unfairly, a
rectangular image is cut out, as depicted in the first column of Figure 3.5. The
dimensions of the images are chosen as multiples of 16 to facilitate jpeg com-
pression of both the original and the subsampled version of the images. The
images are first geometrically normalized, which makes them slightly bigger.
The normalized images are then divided into [32 × 32] pixel blocks and each

28 A Block-Based Algorithm

Figure 3.5: First column: original images (not included in training set). Second
column: block-tiling with block size [32 × 32] pixels, psnr = 33.6 dB and 33.3 dB (top
and bottom, respectively), rate = 0.07 bpp. Third column: jpeg encoded, psnr =
27.0 dB and 26.6 dB, respectively, rate = 0.18 bpp. Fourth column: subsampled jpeg:
psnr = 25.4 dB and 25.3 dB, rate = 0.12 bpp

block is then Karhunen-Loève transformed. The coefficients are coded as de-
scribed above using an overall bit rate of around 3000 bits per image (or 0.07
bits per pixel (bpp)), including the 13603 bits to perform the inverse geometrical
normalization. This corresponds to the second column in Figure 3.5, with psnr

around 33 dB. The block is also coded with jpeg (third column), resulting in
psnr = 27 dB, rate = 0.18 bpp (8000 bits). Note that this is more than two
times the number of bits needed by the proposed algorithm, and the quality
is 6 dB worse. Since the jpeg coder could not reach lower rates than this,
the images were subsampled, jpeg coded and upsampled. This resulted in the
right-most image, psnr = 25 dB, rate = 0.12 bpp (4500 bits), about 8 dB worse
than the block-tile algorithm.

3.5 Size and Shape of the Regions

By tiling the images into regions, two new parameters have been introduced,
namely the size and the shape of the regions. The diagram in Figure 3.6 shows
the quality as a function of rate for the same image4 compressed with different
region sizes; [8 × 8] pixel blocks (triangles), [32 × 32] pixel blocks (squares), and
the full frame size (circles).

3Since the image does not cover the entire face, nine points of the mask in Figure 2.4 are
not needed in the inverse geometrical normalization. With 18 10-bit integers fewer, the result
is 1360 bits.

4The same experiment was conducted for a small set of images, and the result was similar
in all cases.

3.5 Size and Shape of the Regions 29

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

26

28

30

32

34

36

38

40

42

44

46

bits per pixel

P
S

N
R

Figure 3.6: Circles: full frame. Squares: 32 × 32 pixel block. Triangles: 8 × 8 pixel
block.

It is interesting to note that the full frame coder is outperformed by the [32 × 32]
pixel-block-coder at bit rates above 0.01 bpp. This might at first seem peculiar:
The full frame case is equivalent to the block-based case but without restrictions
on the support of the basis vectors. Given a large enough training set, the full
frame pca will find the best set of linear basis vectors. In other words, if the
block-based scheme were optimal, the basis vectors in the full frame case would
converge towards rectangular support. Since the full frame method in this sense
is more general, it ought to outperform the block-based scheme at all bit rates.
One possible explanation why it is not so is that for large region sizes, such as
the full frame case, the size of the training set, N , is too small in relation to
the dimensionality of the region, nb. This means that the ϕ̂ks will be a bad
estimate of the ϕ̄ks, particularly for large regions.

If the region size becomes too small, on the other hand, the penalty for not
being able to exploit pixel correlation across block boundaries will be high.
Thus we have identified two problems coupled to the size of the regions:

1. Too large a block size ⇒ ϕ̂k bad estimate of ϕ̄k if N too small.

2. Too small a block size ⇒ The inability to exploit across-block correlation
hampers performance seriously.

Different parts of the face texture may have different characteristics, and may
thus be more or less influenced by the two problems stated above. For instance,
the smooth cheek areas with high inter-pixel correlation might suffer more from

30 A Block-Based Algorithm

(2) than from (1) and should thus be tiled into larger regions than, e.g., the eye
area. This could lead to the conclusion to use the candide triangles (depicted
in Figure 2.4) as regions. However, some of the candide triangles are small
even though they cover smooth areas of the face, and others are probably larger
than they should. In addition, not only the sizes of the regions but the placing of
them is more related to the 3D structure of the face. Recently, a more appealing
approach was presented by Jebara et al. [36], where an iterative algorithm finds
the shape and the relative size of the regions by minimizing the mse over a set
of face images different from the ones in the training set.

In this work, square-shaped regions of equal size were chosen, primarily be-
cause it makes the coder easy to implement. Since inter-pixel correlation de-
creases with distance in normal images, a more compact region-shape such as
the hexagon would be a possible improvement. An even more obvious improve-
ment would be to make use of the strong correlation of the left and right halves
of the face by letting each region consist of two sub-regions, one on each side of
the symmetry axis. Figure 3.7 illustrates this. Here the region A in the image

region C

region B

region A

symmetry axis

Figure 3.7: The symmetry axis of the face suggests that the regions should be non-
connective and made up from two sub-regions from each side of the axis.

is made up from the two subregions of each eye.

Chapter 4

Global Bit Allocation

In the block-based algorithm described in Chapter 3, each block is handled
independently from the others. More specifically, the same number of bits is
allocated to all blocks, regardless of the image contents. Most transform based
image coding algorithms make the quantization dependent of the image content
in order to allocate bits to parts of the image that are hard to code. Some
wavelet algorithms [57, 55], use zerotrees (or similar structures) to localize large
coefficients, corresponding to areas that contain a lot of structure. Another ex-
ample is the jpeg algorithm which run length codes the coefficients; blocks of
simple structure will contain a lot of zero coefficients and use up few bits. How-
ever, in both of the above-mentioned methods, all parts of the image are treated
the same way, e.g., the zerotree algorithm does not favor the left hand side of
the image over the right hand side. Similarly the jpeg method treats each block
the same way, regardless of its position within the image. This approach makes
sense when compressing general-purpose images, since any pattern may occur
anywhere in the image. However, this is not true for the class of geometrically
normalized face images where, e.g., the nose is always in the center of the image.

To clarify the difference, consider for a moment the collection of all images
accessible on the Internet, Iweb [i, j]. The expected luminance level in each
pixel, E{Iweb [i, j]}, will probably not depend much on [i, j]. Likewise, the cor-
relation between pixels in the image will probably not depend much on where
it is measured; two neighboring pixels in the center of the image will correlate
approximately as strongly as two neighboring pixels near the corner of the im-
age will. Accordingly, the jpeg algorithm, which is widely used for Internet
images today, is built to treat each block in the image the same way, without
considering from where in the image the block emanates.

For the source of geometrically normalized face images ȳF [i, j], on the other
hand, none of the above is true. The expected pixel intensity, for instance,
will depend heavily on where in the image it is measured. This can be seen in
the image in Figure 4.1, which is the average of 100 geometrically normalized

32 Global Bit Allocation

face images and thus an approximation of E{ȳF [i, j]}. This image is far from

Figure 4.1: This image is the average of 100 geometrically normalized images.

having the same graylevel everywhere; instead the intensity varies significantly
over the image area. Similarly it is probable that the correlation between pixels
in the smooth regions of the face (such as the cheek region) is higher than in
other regions. Since each region, due to the normalization, will always be in a
prespecified part of the image, it is possible to know à priori which parts of the
image will be easy to code. Some regions will, on average, be well described
using just a few bits, whereas others will need more bits in order to achieve the
same quality.

4.1 Global Allocation of Bits

This section proposes to allocate the bits globally, by collecting the eigenvalues
corresponding to the basis vectors from all blocks, and performing the bit al-
location mentioned in Section 2.6 on all coefficients simultaneously. Note that
this operation does not depend on the particular image, but rather on statistics
common to all face images, namely the eigenvalues from the pca. These are
prestored in the decoder and thus no extra bits need to be transmitted in order
to resolve the bit allocation for a certain bit rate. The table in Figure 4.2 shows
the distribution after global bit allocation. Note that some blocks, such as the
one marked with a box, are assigned several times the number of bits than some
of the other blocks.

To evaluate how much is gained in psnr by this uneven distribution of the
bits, the following experiment has been conducted: A second set of images,
called the evaluation set, disjoint from the training set, is used. Each image in
the evaluation set is coded, first with the bit distribution from Figure 4.2, and
then with an even distribution, but with the same total number of bits. The

4.2 Possible Improvements 33

– – 12 68 97 114 99 72 15 – –
– 41 104 119 120 117 120 116 107 51 –
08 96 95 95 93 85 92 97 94 103 12
40 92 78 68 66 67 66 69 74 88 51
70 71 60 52 52 49 52 49 58 67 77
77 54 46 50 43 46 46 48 46 52 73
77 69 79 73 59 47 56 71 79 73 73

68 79 166 206 92 55 85 192 179 84 70

45 65 118 113 82 43 77 113 118 70 51
25 28 36 39 43 42 40 39 37 28 25
14 22 27 46 99 86 100 50 27 24 16
11 27 38 42 52 65 54 41 44 28 12
05 33 50 100 101 114 105 104 56 33 09
– 26 41 42 59 68 60 42 43 26 04
– 4 19 36 41 48 44 36 22 05 –

Figure 4.2: Left: the number of bits per block with global assignment. An average of
61 bits per block is used. Right: the left table visualized; the darker the area, the more
bits per block.

result is presented in Figure 4.3. In all of the 33 images, the psnr count is
higher with the uneven bit distribution, and the average gain is 0.5 dB.

The image to the right in Figure 4.2 shows the same data as the table, us-
ing dark shades of gray for high bit concentrations, and light shades for low.
Note that the optimization procedure is concentrating the bits to the visually
important features. Thus the perceived quality gain should be visible despite
the modest psnr-gain. This is confirmed in Figure 4.4. It is evident that it
is suboptimal to spend the same number of bits on edge blocks, which contain
few foreground pixels, as on interior blocks. Therefore, the edge blocks were
removed from the image in Figure 4.4 prior to the coding, so that a fair com-
parison of the two methods could be conducted. The original image (left) is
compressed with a uniform bit distribution (middle) and with the bit distribu-
tion from Figure 4.2 (right). The uneven coefficient distribution improves the
quality about 0.42 dB. Note the substantial difference of image quality in the
eye region. A blow-up of the right eye can be seen in the lower row of Figure 4.4.

4.2 Possible Improvements

This chapter has concluded that, on average, it is wise to assign more bits to cer-
tain regions at the expense of others. However, for a particular image, the best
bit allocation may be different. Thus, an improved bit allocation algorithm can
include an image dependent component in addition to the image class dependent
component presented in this chapter.

34 Global Bit Allocation

0 5 10 15 20 25 30
30

31

32

33

34

35

36

37

Image number

P
S

N
R

Figure 4.3: The diagram shows the benefit of allocating bits globally. The white bars
with circles show the psnr when the same number (61) of bits is used in each block.
The black bars with crosses show the psnr for the same images when the bits are
globally allocated.

4.2 Possible Improvements 35

Figure 4.4: Top row: the original image (left) is compressed with a uniform bit distri-
bution (middle). Using the uneven distribution from Figure 4.2 improves the quality
0.42 dB (right) for the same rate. Bottom row: a blow-up of the right eye region.

36 Global Bit Allocation

Chapter 5

Refined Normalization

In Chapter 2 the feature points needed for the geometrical normalization are
extracted manually. The exact placing of the feature points is thus rather ad
hoc. This chapter investigates how much can be gained if the feature point posi-
tions are refined. This refinement problem can be formulated as a minimization
problem, where the mean-squared error (mse) is minimized over possible feature
point positions, leading to an increase in quality of around 1.6 dB. The chapter
is concluded with a speculation about the possibilities of using the method as a
step in an automatic feature extractor.

5.1 Errors in Manually Extracted Feature Point

Data

On scrutinizing the training set after geometrical normalization, it becomes ev-
ident that the (manual) extraction of the feature points can be improved. For
instance, the eye-sizes should be the same for all images in the training set after
geometrical normalization has been carried out; still, as shown in Figure 5.1,
they vary considerably. Due to erroneous feature point data, the geometrical
normalization step fails in this case to compensate for different eye-sizes. Worse
still, it can introduce differences that are not present in the original data. Fig-
ure 5.2 shows a face image before (left) and after (right) geometrical normaliza-
tion. Before the normalization the eyes are roughly of the same height, whereas
after the normalization, the right eye is clearly more vertically elongated than
the left. This means that there is room for improvement of the feature point
data.

38 Refined Normalization

Figure 5.1: Two images from the geometrically normalized training set. Note that
the left eye of the left person is smaller than the left eye of right person. Geometrical
normalization is supposed to remove such differences between images, so this erroneous
result is due to bad feature point data.

Figure 5.2: With bad feature point data the geometrical normalization can worsen the
alignment: The left face image (before the geometrical normalization) has roughly the
same height of the eyes, whereas in the right image (after), the person’s left eye is
clearly more vertically elongated than the right.

5.2 Feature Point Refinement as an Optimiza-

tion Problem

A possible means of refining the feature point positions is to vary the feature
points around their current positions and choose the position that gives the
lowest mse between the original and compressed face image. Let ᾱ = prj(ȳ)
be the function that projects a (normalized) face image ȳ on the basis vectors
of the database, and let ŷ = rec(ᾱ) be the function that reconstructs the im-
age ŷ from the coefficients ᾱ. Analogous with Chapter 2, ȳ = GN(x̄, θ̄) and
x̂ = GN+(ŷ, θ̄), respectively, will denote the geometrical normalization and its
inverse1. It is then possible to define a function ε = f(x̄, θ̄) = ‖x̄ − x̂‖2 =

1The geometrical normalization is not reversible (see Section 2.7). The function GN+ is
still called inverse geometrical normalization, even though this is somewhat incorrect.

5.2 Feature Point Refinement as an Optimization Problem 39

‖x̄ − GN+(rec(prj(GN(x̄, θ̄))), θ̄)‖2. The function is illustrated in Figure 5.3.
The problem of refining the feature point positions θ̄ can thus be seen as an

GN(x,)θ
θ

feature

x
KLT +
truncation

points
y y

|| ||2

x αrec()

x θf (,)

α
image

KLT
reconstruction θGN(y,)

x

prj()

+

+ −
Σ

Figure 5.3: The function to be optimized.

optimization problem to find the θ̄ that minimizes the error ε;

min
θ̄

f(x̄, θ̄). (5.1)

Such an approach was used by Jebara et al. [36] but for finding the global mo-
tion of a rigid 3D mask rather than adapting a flexible wireframe to a face.

For simplicity, a simple coordinate search algorithm is selected: each param-
eter θk is examined separately. First a direction d is chosen by evaluating
f0 = f(x̄, θ̄) and f1 = f(x̄, θ̄ + δ̄k), where δ̄k = [00 . . . 010 . . . 0]T with a one in
the kth position. If f1 < f0, a positive direction d = 1 is chosen, otherwise a
negative direction d = −1 is chosen. The kth element of θ̄ is now incremented
(or decremented) in pixel-wise steps and the function fi = f(x̄, θ̄+dδ̄ki) is eval-
uated in each step. The process halts as soon as the function values start to
increase. The parameter θk is then updated to the best value, and the process
continues by examining the next parameter, θk+1.

When moving the feature points, it is important to preserve the topology of
the wire frame mesh. In Figure 5.4 the point M is moved to the right. The

C C CD D D

A B A B A B

M M M

allowed allowed degenerate

Figure 5.4: Moving a point M can alter the topology of the mesh. The two first meshes
are of the same topology, but the rightmost one is of a different topology.

40 Refined Normalization

topology is not changed for small changes of M , when the point is still left of the
line BD (middle image), but for large translations of M (rightmost image), the
mesh is no longer of the same topology. Thus Equation 5.1 must be completed
with a condition that the topology should remain unchanged. This can be done
by simply rejecting changes in θ̄ that make triangles face the wrong way. Such
a test would reject the rightmost wire frame in Figure 5.4, since the triangle
△BMD is showing the wrong side to the viewer.

5.3 Results

The diagram in Figure 5.5 shows, for six images, the increase in psnr due to
the optimization procedure. These images were not part of the training set that

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Figure 5.5: The gain in psnr due to optimized placing of the feature points. Database
size M used in prj() and rec() equals 50. The diamonds indicate the quality improve-
ment after the first pass of the algorithm.

was used to calculate the database used in prj() and rec(). The full frame basis
vectors were used in prj() and rec() as opposed to the block based versions. The
increase in psnr varies between 1.1 dB and 2.4 dB, and the average increase
is 1.6 dB. In Figure 5.6, three of these six images are shown before and after
the optimization. The first column contains the original images, the second
contains the images coded using the original feature point data, and the last
column contains the images that are coded using the refined feature points.
The images (from top to bottom) correspond to the first, third and the fourth
image in the diagram in Figure 5.5. Hence the images in the third column have
increased their psnr by 1.8 dB, 1.1 dB and 2.4 dB, respectively, compared to the

5.3 Results 41

Figure 5.6: First column: the original images. Second column: the coded images
without feature point refinement. Last column: the coded images after feature point
refinement. The images (from top to bottom) correspond to the first, third and fourth
bar in the diagram in Figure 5.5, respectively. The psnr improvement figures are
1.8 dB, 1.1 dB and 2.4 dB, respectively. In the two top rows, note the improvement
in the eyebrow region. Also, note that in the top and bottom rows, the nose and the
mouth regions are better represented. In the third row the hairline has also improved
significantly.

42 Refined Normalization

images in the second column. Note the following improvements in image fidelity
which are typical of this type of optimization: In the female faces of the two top
rows, the thin eyebrows are much better preserved. Two-thirds of the images
in the training set are men, who usually have thicker eyebrows. Thanks to the
geometrical normalization it is possible to construct a pair of thin eyebrows
from a thicker pair. This is tricky to do manually, but is performed elegantly
by the optimization step. This is also true for the mouth region, which is seen
in the top and bottom row of Figure 5.6. The mouths in the refined versions
are more accurately shaped. Moreover, the nose region was improved in all of
the six images tested. The refined feature points make a better job of putting
the nostrils of the normalized images in the right place. Hence, they are better
aligned with the nostrils in the database and become darker, which improves
the contrast in the nose region. This is especially apparent in the bottom row of
Figure 5.6, where not only the nostrils are darker, but the shape of the nose is
also more accurate. In the same way the irises and the pupils are more distinct
in the normalized images. Finally, in images with a well-defined hairline, like
the bottom image in Figure 5.6, the hairline is more accurately modeled, the
hair is darker and the border between the hair and the forehead is more distinct.

5.4 Complexity

In order to optimize the wireframes for the images in Figure 5.6, the object func-
tion f was evaluated around 800 times (around 540 in the first pass and 260 in
the second pass). Since each evaluation of the function involves the projection of
the original image on 50 eigenimages, the computation time is rather heavy; 22
seconds per function evaluation, i.e., about 5 hours for the entire optimization.
This is acceptable for off-line purposes, such as refining the normalization for
the images in the training set, but cannot, at least with the computing power
of today, be used for real-time applications.

One way to reduce the complexity is to reduce the number of images in the
database used by prj() and rec(). The resulting parameter vector θ̄ can then
be used to compress the image using a larger database. Unfortunately, this
does not work very well. The idea was tried out using a database of five eigen-
images in prj() and rec(), but 50 eigenimages in the final version comparison.
As can be seen in the diagram in Figure 5.7, the gain in psnr is not as high
as in Figure 5.5 where 50 eigenimages were used in prj() and rec(); it varies
between 0.2 dB and 1.4 dB and averages around 0.7 dB, only half of the 1.6 dB
achieved with M = 50 in prj() and rec(). One might consider this rather good
— 0.7 is still better than nothing — until taking a look at the images depicted
in Figure 5.8. The images here suffer from “edge artifacts” (sharp edges that
appear in the face) and the skin has a somewhat plastic appearance (this might
not be visible in the printed copy). These two artifacts each have a possible
explanation: In Figure 5.9, the wireframe for the first image in Figure 5.6 is
shown unoptimized (left), optimized with M = 50 in prj() and rec() (middle)

5.4 Complexity 43

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Figure 5.7: The gain in psnr due to optimized placing of the feature points. Database
size M used in prj() and rec() equals 5, database size for evaluation equals 50.

and finally optimized with M = 5 (right). The rightmost wireframe in this
figure differs from the two others in that it contains many triangles of almost
zero area. This means that two triangles that are separated by such a triangle
in the normalized image appear next to each other in the inversely normalized
image, producing discontinuities in the intensity. This explains the “edge arti-
facts” which, e.g., can be seen on the left side of the nose in the middle image
in Figure 5.8. Worse still, in the right eye-region in the rightmost wireframe,
the topology has changed (in analogy with Figure 5.4). This can create black
spots in the decoded image, such as the black dots above the left corner of the
mouth in the rightmost image in Figure 5.8. Moreover, by optimizing on only
the first five eigenimages in the database, the result is that a lot of the energy in
the image is transferred to the first five coefficients from the others, compared
to the case where no optimization has taken place. More specifically, the six
images used in the diagram in Figure 5.5 were compressed with a database size
of M = 5 first with the original feature points, and later with the feature points
that had been refined using M = 5 in prj() and rec(). The average gain from
this refinement was measured as 2.3 dB. This means that, due to the refine-
ment, some extra error-energy corresponding to 2.3 dB was reduced by the first
five eigenimages, ending up in the five first coefficients. Now, by changing M
to 50, the gain compared to the non-optimized case is only 0.7 dB. Since the
first five eigenimages are the same in both coders, the first five coefficients must
again have improved their energy by 2.3 dB. This means that the remaining 45
coefficients have lost energy corresponding to 2.3 dB-0.7 dB = 1.6 dB. Thus,
by optimizing over only the five first eigenimages, we have transferred energy

44 Refined Normalization

Figure 5.8: Optimized with M=5 in prj() and rec(). Note how this causes edge artifacts
(all three images), and topology errors (visible as black spots in the rightmost image).

Figure 5.9: The wireframe mesh for the first face image in Figure 5.8. Left: before
refinement. Middle: refined using M = 50 in prj() and rec(). Right: ditto for M = 5.

from the 45 last coefficients to the five first. Since basis vectors of lower order
usually show low-pass behavior, the result should be an image with smoother,
more plastic-looking skin.

5.5 Gradient Descent — a Possible Improvement

Instead of reducing the time to evaluate the object function, complexity can be
decreased by reducing the number of times the function is evaluated. This can
be done by estimating the gradient of the object function with respect to the
vertex points.

Assume that I(x, y) is the original image. Since the geometrical normaliza-
tion is carried out by moving vertices of a triangle mesh, the mapping of the
coordinates from the original image to the normalized image will be piecewise
affine. Assume that I ′(x, y) is the normalized image, and g the affine coordinate

5.5 Gradient Descent — a Possible Improvement 45

transform
gx(x, y) = a11x + a12y + a13

gy(x, y) = a21x + a22y + a23, (5.2)

so that I ′(x, y) = I(gx, gy). The coefficients aij in g can be determined from
the position of the vertices (vl

x, vl
y)3l=1 of the triangle in the original image (for

details, see [40]). Further assume that Î ′(x, y) is the approximated version
of I ′(x, y): Î ′(x, y) =

∑p
k=1 αkϕk(xi, yi), where αk =

∑

∀i I ′(xi, yi)ϕk(xi, yi).
By using the affine transform backwards, the original shape can be recovered:
Î(gx, gy) = Î ′(x, y). Î(x, y) is thus the approximation of I(x, y).

When choosing object function to minimize, both (I − Î)2 and (I ′ − Î ′)2 are
possible. While the former is more correct, since it considers the original and
approximated image as opposed to the original and approximated texture, the
latter leads to simpler equations and is hence selected. The object function f
thus becomes

f =

p
∑

i=1

[

I ′(xi, yi) − Î ′(xi, yi)
]2

=

p
∑

i=1

[

I ′(xi, yi) −
(

p
∑

k=1

αkϕk(xi, yi)

)]2

.

(5.3)
Let (vl

x, vl
y) be the position of the lth vertex in the original image. f can now

be differentiated with respect to the vertex movements through

∂f

∂vl
x

=

p
∑

i=1

2
(

I ′(xi, yi) − Î ′(xi, yi)
)

[

∂I ′(xi, yi)

∂vl
x

−
p

∑

k=1

∂αk

∂vl
x

ϕk(xi, yi)

]

, (5.4)

where
∂I ′(xi, yi)

∂vl
x

=
∂I(gx, gy)

∂vl
x

=
∂I

∂gx

∂gx

∂vl
x

+
∂I

∂gy

∂gy

∂vl
x

(5.5)

and

∂αk

∂vl
x

=
∂

∂vl
x





p
∑

j=1

I ′(xj , yj)ϕk(xj , yj)



 =

p
∑

j=1

∂I ′(xj , yj)

∂vl
x

ϕk(xj , yj). (5.6)

In Equation (5.5), ∂I
∂gx

and ∂I
∂gy

are simply the gradient images of the original

image I(x, y) in the x− and y− directions respectively. The affine function
gx(x, y) depends on the coefficients aij , which in turn depend on vl

x. ∂gx

∂vl
x

is

therefore easily obtained. ∂f
∂vl

y
is calculated similarly.

The calculation of ∂f
∂vl

x
in Equation 5.4 can be sped up by approximating ∂αk

∂vl
x

with 0. The scheme will then alternate between finding the best normalization
for a specific set of αk and finding the best αk for a specific normalization.

46 Refined Normalization

The vertices in the triangle mesh can now be updated using gradient descent:

vl
x = vl

x − δ
∂f

∂vl
x

, (5.7)

where δ is a suitable small constant. vl
y is updated in the same way. Note that

each vertex may influence more than one triangle. In that case, the differential
∂f
∂vl

x
should be summed over all affected triangles.

5.6 Feature Extraction

Potentially, the feature point refinement technique presented in this chapter
can be used for feature point extraction. Combined with an algorithm that can
localize the position and boundary of the face, a wireframe with the feature
points in their average position can be put on the face and used as an initial-
ization to the feature point refinement procedure. No experiments have been
made to see if this works. One experiment could be to investigate how much
the vertices of the wireframe can deviate from the true feature point positions
before the algorithm ceases to converge. If it proves to be robust, this could
be the solution to the texture extraction problem. As seen in Figure 5.10, this
could be the block providing the first texture and the first set of parameters in
a model-based coder.

_

θ
motion
parameters

x^

x
_

first
image

synthesis

_

θ
first
texture

0

_
y

x
_

0

_
ε

error
estimation
motion

predicted image

image

face detector

0

first set of
parameters

estimation
displ. field

facial
feature
refinement

Figure 5.10: Possible scheme for a model-based coder, which includes the normaliza-
tion refinement block.

Part II

Real-Time Model Based

Head Tracking

Chapter 6

Related Work

This chapter will serve as an overview of the different head tracking systems that
can be found in the literature. Only systems that track true three-dimensional
motion (translation and rotation in three-dimensional space) will be considered.
Notation has been changed to keep it consistent throughout the chapter. Some
trackers resolve not only head pose but also local motion in the form of facial
movements, as well as three-dimensional structure information. In this chapter
however, only the head tracking part of the algorithms is considered. The
chapter will end with a description of a proposed system that both operates in
real time and is robust to large rotations out of the image plane.

6.1 Head Tracking Based on Optical Flow Meth-

ods

Several of the head tracking algorithms in this survey are based on optical flow,
and therefore Appendix B provides a short introduction to the topic. Whenever
possible, the notation from the appendix is used in this chapter.

6.1.1 Planar Parametric Optical Flow

In their 1995 paper [13], Black and Yacoob model the face as a plane in three-
dimensional space. By doing so, the optical flow field from Equation (B.6) can
be further simplified [2] to

u(x, y) = a0 + a1x + a2y + p0x
2 + p1xy

v(x, y) = a3 + a4x + a5y + p0xy + p1y
2.

(6.1)

Equation (6.1) is valid for all pixels in the image that belong to the face, with

the same coefficients Π =
[

a0 . . . a5 p0 p1

]T
for all these points. The

tracker starts out with the assumption that the pixels that constitute the face

50 Related Work

are given. This area in the first and second frame is now used to estimate the
coefficients Π. By using

X(x) =

[

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

]

, (6.2)

Equation (6.1) can be written as
[

u v
]T

= X(x)Π, which, inserted in Equa-
tion (B.11), yields

∇IX(x)Π = −It. (6.3)

Thus one linear equation for Π is obtained per pixel in the face region. A robust
least squares regression is used to estimate the coefficients Π. Once these coeffi-
cients are obtained, Equation (6.1) is used to calculate the optical flow to work
out where the pixels of the facial area have moved from the first image to the
second. This is done repeatedly, and the face can thus be tracked. Since this sys-
tem is differential, it is susceptible to drift, i.e., tracking errors will accumulate
over time. From the coefficients in Π, information about the three-dimensional
motion can be inferred. For instance, if p0 is positive, this is interpreted as
the head rotating leftwards around the neck. Black and Yacoob do not at-
tempt to recover the real three-dimensional motion, (Ωx,Ωy,Ωz, Tx, Ty, Tz), (cf.
Equation (B.6)), since this is not needed for their application, which is facial
expression recognition. About 2 minutes of processing is needed per frame on
a Digital Alpha 3000 machine.

6.1.2 Elliptical Optical Flow Model

In order to cope with larger sized head motion, Basu et al. use an ellipsoid
model instead of the planar model [11]. The first frame is used to adjust the
sizes of the major axes of the ellipsoid. A number of three-dimensional points
P0 are then sampled from the surface of the ellipsoid, together with their nor-
mals N0. The position and orientation of the ellipsoid are parameterized as
a =

[

α β γ tx ty tz
]

where (α, β, γ) represent the absolute Euler angles
relative to the first frame, and t = (tx, ty, tz) represents the translation, also
relative to the first frame. The kth three-dimensional point Pk and its normal
Nk can be calculated as

Pk = TRP0 + t

Nk = TRN0,
(6.4)

where TR is a rotation matrix obtained by multiplying the three Euler rotation
matrices together. Projection to the image plane is performed using

x =
X

1 − Z/Zd

y =
Y

1 − Z/Zd

,

(6.5)

where Zd, which is assumed to be known, is a constant that depends on the
focal length. (This projection formula is different to that of Equation (B.5) due

6.1 Head Tracking Based on Optical Flow Methods 51

to a different positioning of the origin.) If the pose is known in frame n − 1,
the image coordinates (x′

k, y′
k) of point k in frame n − 1 can be calculated, by

combining (6.4) and (6.5). The optical flow in this point then follows

uk(a) = xk(a) − x′
k

vk(a) = yk(a) − y′
k,

(6.6)

where (uk, vk) are functions of the parameters in a. A general optical flow
algorithm is used to compute the measured flow (uM,k, vM,k), and the error
between the two is measured;

ǫk = (uk(a) − uM,k)2 + (vk(a) − vM,k)2. (6.7)

In order to decrease the weight of statistical outliers, the error is truncated at
ǫt using

ek = min(ǫk, ǫt). (6.8)

The target function E =
∑

k ek is now minimized over a using simplex search.
When the error E is below a certain threshold the procedure is stopped and the
next frame is processed. Basu et al. compared their results to a planar model
and found that the ellipsoid model gave better results [11]. Due to the simplex
search the method is relatively slow, about 30 seconds per frame.

To get a model that fits the head better than what an ellipsoid can do, Zhang
and Kambhamettu use an extended superquadric model [76]. They also use a
motion segmentation algorithm to provide robustness against partial occlusion.
A post-regularization method based on edge flows is also employed to reduce
error accumulation.

Harville et al. use depth measurements from a stereo rig to extend the bright-
ness constraint with a depth constraint [30]. This increases robustness for large
rotations out of the image plane and for translation in depth, but carries the
cost of stereo input.

6.1.3 Feed-Back Optical Flow

In his Licentiate Thesis from 1990 [53], Roivainen uses the three-dimensional
head model candide [54] to parameterize the optical flow. Equations B.4 and

B.5 are combined to
[

x2 y2

]T
= F (P1, U), where U is the state vector contain-

ing both rotation and translation as well as local motion (face gestures). Taylor
expanding around U and neglecting higher order terms, yields

[

u
v

]

=
∂F

∂uj

∆U, (6.9)

which is equivalent to Equation (B.8) for C = ∂F
∂uj

except for the local motion

parameters. Roivainen estimates ∂F
∂uj

numerically. The optical flow (uM , vM)

52 Related Work

is measured, and for each point k in the face,
[

uMk vMk

]T
= Ck∆U should

hold. Gathering 200 such points, the matrix equation

V = C∆U (6.10)

is formed, where V =
[

uM1 vM1 uM2 vM2 . . .
]T

and C =
[

CT
1 CT

2 . . .
]T

.
∆U is then calculated using least squares

∆U = (CT C)−1CT V. (6.11)

The point contributing the most to the error is removed and the least squares
solution is recalculated. This is done six times in an attempt to remove the
worst statistical outliers.

Roivainen also investigates how to update the state parameter U , once the
differential state ∆U has been estimated. The first attempt, here denoted feed-
forward motion estimation, is depicted in Figure 6.1. The two last images n and

Figure 6.1: Feed Forward Motion Estimation

n−1 are processed and the differential motion ∆Un between these is estimated.
This ∆Un together with the previous pose Un−1 are used to estimate the cur-
rent pose Un. Since there is no feedback from the pose estimation Un−1 to the
motion estimation, errors made in the motion estimation stage will accumulate
without any chance of recovery. Both the tracker of Black and Yacoob [13] and
that of Basu et al. [11] are updated in a similar differential fashion, and will
thus be susceptible to drift.

In a feed-back motion estimation system, the motion estimation is performed
between the image n and a rendered version of the head. This is shown in Fig-
ure 6.2. If there is a small error in the estimation of ∆Un−1, this will mean that
the pose estimate Un−1 will be wrong. This error will influence the rendered
image, and can be corrected for by ∆Un. The feed-back tracker in Figure 6.2
can thus track without error accumulation.

Li et al. [43] extend the work of Roivainen in three important aspects. Firstly,
a modified version of Equation (B.9) including local motion is used, instead of

6.1 Head Tracking Based on Optical Flow Methods 53

Figure 6.2: Feed-back motion estimation

numerically estimating the matrix Ck for each point k. Secondly, instead of esti-
mating the optical flow V and using Equation (6.11) to resolve ∆U , the optical
flow constraint of Equation (B.12) is used in combination with Equation (B.7):

[

Ix Iy

]

[

cu

cv

]

∆U = −It (6.12)

or
G∆U = −It,

(6.13)

where G =
[

Ix Iy

]

[

cu

cv

]

. The motion ∆U can now be calculated using ∆U =

−(GT G)−1GT It. Avoiding to estimate the optical flow is an advantage, since
it is not always possible to do this reliably. The price for this is that the op-
tical flow constraint is only valid for small motions. The third modification by
Li et al. is therefore to predict the motion ∆Ûn from the previous movements
∆Un−1, ∆Un−2, etc. By linearizing Equation (B.10) around Un−1+∆Ûn instead
of around Un−1, large motions can be estimated. This changes the constraint
from small motions (small ∆Us), to a constraint on the size of the prediction
error ∆Un − ∆Ûn.

In a later paper, Li and Forchheimer modify their algorithm to include M-
estimation, which is a robust version of the least squares algorithm [42].

6.1.4 Deformable Models and Optical Flow

DeCarlo and Metaxas use a very detailed head model constructed from anthro-
pological data [20]. The parameters (around 80) are divided into basic shape
parameters qb that are characteristic for each head and do not change over time,
and motion parameters qm that drive both global and local motion. The pa-
rameters are changed using a deformable model framework, where edges in the
image give rise to forces on the parameters according to

q̇ = fq, (6.14)

54 Related Work

where the dot denotes derivative with respect to time. In addition to this, the
motion parameters are influenced by the optical flow constraint from Equa-
tion (6.13), which in the notation of DeCarlos and Metaxas is written

Gq̇m + It = 0 (6.15)

and can be solved using
q̇m = −G+It, (6.16)

where G+ is the pseudo-inverse G+ = (GT G)−1GT . Instead of using Equa-
tion (6.16), this equation is used as a hard constraint on Equation (6.14), yield-
ing

q̇m = −G+It + (I − G+G)fqm
. (6.17)

The matrix (I −G+G) in (6.17) changes qm according to the part of fqm
that is

consistent with the optical flow. The edge force component of (6.17) is designed
to combat accumulation error in what is otherwise a differential scheme prone
to drift. The system handles large rotations well and runs at about 2.5 seconds
per frame on a 175 MHz R10000 SGI O2.

6.2 Active Appearance Based Techniques

In their 1998 paper [17], Cootes et al. present a way to analyze images of faces.
The starting point for their technique is a representation where both the tex-
ture and the shape of an image are modeled using eigenspaces, as shown in
Figure 6.3. Similar representations have been used for face recognition [18] and

Figure 6.3: The starting point for an Active Appearance Model of a face — both the
shape and the texture are modeled using eigenspaces.

image compression (Part I of this thesis and [63, 64]). A mesh is fitted to the
face image I and the texture is geometrically normalized. The shape s and the
texture g are projected onto eigenspaces made of similar shapes and textures,
and are compressed to a small number of parameters bs and bg. By combining

6.2 Active Appearance Based Techniques 55

these two parameter sets and performing a new PCA, a new parameter vector c

containing appearance parameters is created. The appearance parameters con-
tain information about both shape and texture. From this parameter set it is
possible to reproduce an approximation Î of the image, with an error ∆I.

The basic idea of the analysis is to deduce from the error image ∆I how to
change the appearance parameters c in order to get a better fit of the model.
This is illustrated in Figure 6.4. Here, the shape is misaligned in the vertical

Figure 6.4: Analysis step of an Active Appearance Model: The slightly mismatched
mesh in the image I will generate an error ∆I between the original image and the
model. A function ∆c = f(∆I) of this difference image tells how to move the mesh to
get a better fit.

direction, which means that the error image ∆I will contain shadow images of
two faces superimposed. For instance, the error image will contain a bright eye
shadow below the eye region. A function ∆c = f(∆I) is found that maps the
error image to a suitable correction of the appearance parameter c. Cootes et al.
use a linear function that can be obtained by setting the Taylor expansion of
the error function to zero.

By starting with c = 0 (which gives the average face), c can be corrected in the
above-described fashion until it converges. It will find the correct shape and
texture of the face given that the starting position is not too far from the true
solution. Cootes et al. have used their algorithm on image sequences, where the
appearance from the previous frame is used as a starting value for c.

Even though Active Appearance Models are two-dimensional, they can cope
with a certain amount of out-of-plane rotation by deforming the shape. By
switching between several two-dimensional models, a wide span of orientations
can be covered.

Cascia et al. use a three-dimensional version of the active appearance method
[16]. Instead of modeling the shape using a two-dimensional PCA, a cylinder
model of the head is used. The shape is parameterized as bs = (α, β, γ, tx, ty, tz)

56 Related Work

where (α, β, γ) are the absolute Euler angles and (tx, ty, tz) is the three-dimensional
translation of the cylinder. The texture modeling is also modified; the mean
image gm of the eigenspace in Figure 6.3 is replaced with the first image of the
head in the sequence, which is assumed to be frontal. Given that the shape
is correct, any errors should be due to illumination changes, modeled by the
eigenspace Pg. Cascia et al. reports real time performance (15 Hz) on a SGI O2
machine.

Ahlberg [4] uses the three-dimensional Candide model [54] for face tracking
using AAMs. The shape parameter here includes both global parameters (rota-
tion and translation) as well as local deformation. The work is in progress with
the goal of achieving real-time performance.

6.3 Extended Kalman Filter Based Work

Azarbayejani and Pentland reformulate the Structure from Motion (SfM) prob-
lem to a recursive parameter estimation problem that can be solved using an
extended Kalman filter [8]. This algorithm will be explained in more detail in
Chapter 7. One of their applications is head tracking, where a small number of
feature points on the head are tracked using two-dimensional correlation over
small patches, and the resulting trajectories are used to compute the three-
dimensional pose of the head. Simultaneously, the three-dimensional positions
of the tracked feature points are extracted.

Jebara and Pentland [35] extend the work in [8] in several ways: Six feature
points are automatically extracted in the face; the eyes, the sides of the nose,
and the corners of the mouth. Small patches are extracted and used as tem-
plates, and these patches are then tracked using a technique from Hager and
Belhumeur [27] that allows for changes in scale and in-plane rotation. The extra
two degrees of freedom, as compared to just allowing translation, means that
two feature points can be used for each template, i.e., twelve points altogether.
The three-dimensional structure that is obtained from the filter is regularized by
projecting it on to an eigenspace of depth maps taken from Cyberware1 scans.
The structure is then projected to two dimensions and used as a starting point
for the tracking in the next frame. This means that if an individual patch is lost
in the tracking, there is a good chance of finding again since the tracker will be
given a reasonable starting point. The correlation error for the individual point
is fed back to the Kalman filter. Thus the filter will trust bad measurements
less. The algorithm runs at 30 Hz on an SGI O2 200 MHz machine.

Matsumoto and Zelinsky have presented a Kalman filter based face tracking
system for stereo input [46]. The structure from motion problem is then greatly
simplified, but at the cost of having to add a second camera.

1Cyberware, Inc. is a commercial company that designs, manufactures, and sells standard
and custom 3D scanning systems and software.

6.4 Proposed System 57

6.4 Proposed System

Among the different methods mentioned in this overview, only the Adaptive
Feedback Tracker (AFT) from Jebara and Pentland achieves full frame rate,
i.e., 30 Hz, even though the system by Cascia et al. comes close with 15 Hz.
Another appealing feature of the AFT system is that it uses structure from
motion to build the model that helps the tracking. Although more advanced
adaptation of the shape to the image sequence is done by the system from De-
Carlo and Metaxas, their system is far from real-time performance. Another
advantage with the AFT tracker is that it estimates also the focal length of the
camera. All other trackers assume this camera- and zoom- depending parameter
to be known.

Many of the trackers described above use a three-dimensional surface model
for the face, such as a plane [13], an ellipsoid [11] or a triangular face model
[53, 43, 20, 16, 4]. The model estimated by Jebara and Pentland however, is
a point configuration without surface. This is an advantage in that it can be
estimated easily, but it also means that the system cannot predict self-occlusion.
When the head turns left for instance, the left eye will disappear behind the
edge of the head, but the AFT system will keep looking for the eye. The patch
tracking method from Hager and Belhumeur allows for in-plane rotation and
scaling of the patch, but cannot model the affine and projective transforma-
tions that occur when the patch is viewed at a steep angle. Moreover, there
is no mechanism in the AFT system for adding new points to track when the
old ones are occluded. The inability to handle new points, self occlusion and
projective transformation of the patches means that the tracker will not work
when there are large rotations out of the image plane.

In this thesis, the tracker by Jebara and Pentland is extended with a three-
dimensional model of the head. This has several advantages.

• By rendering the model in the estimated pose, the patches can be ob-
tained from the rendered model. Thus the patches will be transformed
projectively.

• Instead of tracking rotation and scale for each individual patch, all the
patches will be transformed at once, reducing the cost of adding another
point. Thus a dense set of feature points can be tracked, which is es-
sentially equivalent to the optical flow in the most information bearing
points.

• The three-dimensional model can be used to predict self-occlusion and
thus determine when a feature point measurement ceases to be reliable.

• The normal of the model can be used to predict the angle at which a patch
is seen. A patch viewed at a very steep angel is more prone to mismatches
than one that is head on, its impact on the solution should therefore be
diminished by the tracking algorithm.

58 Related Work

• The model can be used to predict the position of the side of the head,
which is useful when adding new points.

• By incrementally updating the texture, a full three-dimensional textured
head model is recovered. This fits nicely into the model-based coding
framework. Moreover, by warping the incoming video back to frontal
position, an eigen-representation on the parts of the image can be used.
This enables low-bitrate updates of the texture of, e.g., the mouth and
the eyes.

For developing purposes, it is also useful to be able to compare the incoming
video with the rendered model in order to assess whether the motion of the head
is correct and looks natural.

The proposed tracker is presented in Figure 6.5. The three-dimensional sur-

2D patch

tracking

variance

estimates

(from 3D model

and residuals)

EKF
structure from motion

rendered 3D surface model

pose

3D structure

focal length

3D point model

focal length

pose,

estimated position

point

as starting

is used

measurements
(2D trajectories)

video input

texture

update

Figure 6.5: Patches from the rendered image (lower left corner) are matched with the
incoming video. The 2D feature point trajectories are fed through the SfM extended
Kalman filter that estimates the pose information needed to render the next model view.
For clarity, only four patches are shown.

face model (bottom left) is rendered in the predicted pose. Patches from this
rendered image are matched against the incoming video (top left). The two-
dimensional measurements are fed into an extended Kalman filter that calculates
the three-dimensional structure, pose and focal length for a point configuration
defined by the center of each patch. The pose and the focal length are then used
to render the surface model, and the structure is used to predict the positions
of the patches’ centers in the next frame. Whereas the solid arrows represent
information flow that occurs every frame, the dashed arrows are only invoked
at texture update. When the head has turned sufficiently, texture is grabbed,
and both the three-dimensional surface model (bottom left) and the extended
Kalman filter (upper right) are updated.

6.4 Proposed System 59

As seen here, the structure from motion (SfM) Kalman filter plays a vital part in
the loop above. The next two chapters will therefore describe the SfM problem
in some more detail.

60 Related Work

Chapter 7

SfM for Tracking

Knowing the three-dimensional structure of the tracked feature points can greatly
help tracking. By constraining the two-dimensional positions of the tracked fea-
tures to valid projections of the three-dimensional structure, robustness can
be gained. By solving the structure from motion (SfM) problem, this three-
dimensional structure can be obtained from the two-dimensional trajectories
of the feature points. The SfM algorithm used in this thesis is the one from
Azarbayejani and Pentland [8] which is based on an extended Kalman filter
(EKF). The reasons for choosing this algorithm is mainly that it is recursive
and that it provides an intuitive tool for the three-dimensional structure con-
straint. The most widely used SfM algorithms today are not based on extended
Kalman filtering but on multilinear constraints. Therefore, this chapter will
derive the simplest of the multilinear constraints, and briefly go through how it
can be used for SfM. This will enable a comparison between the EKF- and the
multilinear-based methods in the next chapter.

The chapter starts with a motivation for using SfM in tracking, and contin-
ues with a description of EKF based SfM. The reader is assumed to know about
Kalman filtering and its non-linear extension, but Appendix C is provided as a
service to those who want to refresh their knowledge. The chapter will be con-
cluded with a derivation of how the SfM problem can be solved using multilinear
constraints.

7.1 Using Structure to Help Tracking

To illustrate how SfM can be useful for tracking, a näıve approach to track a
single feature point will first be examined. A small patch around the feature
point is cropped out and matched with the incoming video image. For computa-
tional efficiency, the patch is not matched against the entire image; instead the
search is restricted to a small search area. The search area is centered around
the starting position, which in this first approach is set to be the tracking result

62 SfM for Tracking

of the previous frame. As illustrated in Figure 7.1, the measured position is fed
to the memory element (the block marked with D) and used in the next frame

Figure 7.1: A simple tracking loop — the measured position is fed to the memory
element D and used as the starting position for the matching in the next frame.

as a starting position for the matching.

Such a tracking system has serious stability problems. There are several rea-
sons why the two-dimensional matching might not result in the correct position
within the search area: The point can be occluded, and the illumination or the
orientation can have changed between the template and the image so that the
correct position is no longer the best match. This means that the starting posi-
tion in the next frame might be wrong, and the search area centered around it
might no longer contain the true position. When this happens, the tracker will
move around randomly and will not find the feature point again other than by
pure chance — the tracking has failed.

One way to get around this problem is to track several feature points that
belong to the same rigid object, and attach a confidence value to each match.
For a feature point with a low confidence value, rather than using the flawed
measurement, the two-dimensional position will be estimated from the known
three-dimensional structure and from the other feature points. This is shown in
Figure 7.2, where the cube represents the known three-dimensional structure,

Figure 7.2: The tracked two-dimensional featue points with associated confidence val-
ues (dark circle indicates low confidence value) are fused to a better estimate using the
three-dimensional structure constraint.

and the gray level of a feature point represents its confidence value. The block
labeled “three-dimensional structure constraint” fuses the information from the
three-dimensional structure, the measurements and their corresponding con-
fidence values to corrected estimates of the two-dimensional positions of the

7.1 Using Structure to Help Tracking 63

feature points.

Figure 7.3 shows how this can be used to create a more stable tracking sys-

Figure 7.3: A more stable tracking loop — the three-dimensional structure constraint
and the confidence values are used to obtain reasonable two-dimensional starting posi-
tions for the tracking in the next frame.

tem: The noisy two-dimensional measurements are constrained using the three-
dimensional structure and the confidence values. The corrected two-dimensional
estimates are then used as starting points for the two-dimensional trackers. Note
that in this scheme, the mismatch of a single feature point is not fatal since the
measurement can be corrected and the starting position in the next frame hence
can be made reasonable.

7.1.1 Structure from Motion

To impose a structure constraint, the three-dimensional structure is needed.
Whereas many systems use generic head models [13, 11, 53, 43, 42, 16, 4], De-
Carlo and Metaxas [20] and Jebara and Pentland [35] estimate this structure
from the image data.

The general problem of obtaining three-dimensional structure from two-dimensional
images involves difficult problems such as segmentation, illumination modeling
and correspondence. However, the problem is simplified if it is restricted to
the estimation of rigid three-dimensional structure from the two-dimensional
motion of feature points — a purely geometrical problem. This is usually re-
ferred to as the structure from motion problem and has been carefully studied
[44, 22, 34, 29]. More formally, the SfM problem can be defined as

Definition 3 Given the approximate two-dimensional location of a number of

64 SfM for Tracking

features in a number of images of a rigid object, calculate their three-dimensional
coordinates, the relative motion of the camera and its internal calibration pa-
rameters.

The error in the two-dimensional location of the feature points can both be
small (measurement noise) or large (anomaly errors due to mismatched points),
and the algorithm should preferably be robust to both types of error. Note
that the definition treats the motion of the camera, as opposed to the motion of
the object in the scene. If the object moves rigidly, these two types of motions
are equivalent. The attentive reader might oppose that, due to illumination
changes, rotating the object gives a different result than rotating the camera
around it. In this geometric formulation however, only the positions of the fea-
tures are considered, and illumination effects are thus ignored. The common
practice in the literature is to regard the object as static and ascribe the motion
to the camera. This convention is adopted also in this thesis, even though it
may seem a bit counterintuitive in the case of head tracking.

In summary, the three-dimensional structure of the feature points can help the
tracking. Obtaining this structure is the SfM problem, which is treated in the
rest of this chapter.

7.2 SfM using EKF

An extended Kalman filter (EKF) is a tool to estimate the dynamic changes of a
state vector x̄. The vector x̄ itself cannot be measured; instead a measurement
vector z̄, which is a function of x̄, can be observed. The dynamics of the system
from time step k to k + 1 is described as (see Appendix C)

{

x̄k+1 = fk(x̄k) + w̄k, w̄k ∼ N(0̄, Qk),

z̄k = hk(x̄k) + v̄k, v̄k ∼ N(0̄, Rk),
(7.1)

where the dynamics function fk(·), the measurement function hk(·) and the noise
statistics Qk and Rk are assumed to be known. To use this tool to estimate
SfM, the state vector x̄ is identified as the unknowns; the three-dimensional
structure and the extrinsic and intrinsic camera parameters relative to the first
frame. The measurement vector z̄ will consist of the two-dimensional image
coordinate measurements of the feature points. The function fk(x̄) can be used
to create a motion model for the object, e.g., constant velocity prediction. The
function hk(x̄) will contain a projection from the three-dimensional coordinates
to the two-dimensional image coordinates.

The camera model and the representation of the three-dimensional points are
very important in a recursive SfM algorithm. By using a parameterization that
is different from the one commonly used in the literature, a dramatic increase
in filter stability is gained. The parameterization and the SfM algorithm in this
chapter is the work of Azarbayejani and Pentland [8]. It is repeated here since

7.2 SfM using EKF 65

it is needed in order to understand the next two chapters dealing with planar
surfaces and the addition of new points.

7.2.1 Camera Model

The most common way to select the camera coordinate system is to place the
origin in the center of projection (COP), so that

(

u
v

)

=

(

XC

YC

)

f

ZC

, (7.2)

where (u, v) are the image coordinates and (XC , YC , ZC) are the camera coor-
dinates of the point. Instead, Azarbayejani and Pentland choose to place the
origin in the image plane using

(

u
v

)

=

(

XC

YC

)

1

1 + ZCβ
, (7.3)

where β = 1/f . This is depicted in Figure 7.4. By choosing an image centered
coordinate system, a change in focal length has a direct effect on the image

Figure 7.4: The camera model of Azarbayejani and Pentland.

geometry, i.e., the relative distances between the projected points in the image
plane. In contrast, a change of f in Equation (7.2) will only change the scale of
the image coordinates, and the image geometry will in effect be coded into the
depths ZC . Using β instead of f makes it possible to cover both projective and
orthogonal cases with the same algorithm, and avoids ill-conditioning when f is
large. Note that this camera model assumes that a number of parameters are
known (calibrated), such as camera skew, aspect ratio, and the position of the
principal point.

7.2.2 Structure Representation

The position of a feature point is represented by its image coordinates in the
first frame (u0, v0), and its unknown depth α, as shown in Figure 7.4. The point

66 SfM for Tracking

is restricted to lie on the line that emanates from the center of projection and
goes through the point (u0, v0) in the image plane. If the depth α is known, the
cartesian coordinates in the first frame (X,Y,Z) can be computed from u0, v0

and α using




X
Y
Z



 =





u0

v0

0



 + α





βu0

βv0

1



 . (7.4)

Note that the three-dimensional location thus can be parameterized by the single
parameter α, since the image coordinates (u0, v0) in the first frame are known.
This has important implications for the stability of the Kalman filter. Using
the standard parameterization (X,Y,Z) yields 3N + 7 degrees of freedom in
the state vector x̄; three for each point, three respectively for translation and
rotation and one for focal length. The measurement vector, however, will only
contain 2N elements (the x− and y− image coordinates for each point), and
the Kalman filter will thus be underconstrained. This is the case in the work
of Broida et al. [15] where a good starting estimate of the structure is needed
for convergence. However, the parameterization of Equation (7.4) with a single
parameter per point will result in N +7 degrees of freedom compared to 2N for
the measurement vector. Hence, if N > 7, the problem is overconstrained and
thus uniquely solvable in each time step. This makes the algorithm useful as a
solution to the SfM problem and not merely a way to adjust estimates already
obtained from another SfM algorithm such as in [15].

Since structure can only be recovered up to scale, the depth α of the first point
is fixed at 1. This is conveniently done by setting the corresponding variance in
the Kalman filter to zero.

7.2.3 Translation and Rotation

Translation between the first and the current camera frame is parameterized as
(tX , tY , tZ). In the orthogonal projection case, tZ is not observable. Therefore,
tZβ is estimated instead. This is advantageous also in the projective case for
long focal lengths, since the sensitivity of the image coordinates for tZβ

∂u

∂tZβ
=

−XC

(1 + ZCβ)2
(7.5)

does not go to zero when f → ∞ (β → 0) as it does for tZ :

∂u

∂tZ
=

−XCβ

(1 + ZCβ)2
. (7.6)

The rotation from the first to the current frame is represented by a unit quater-
nion q = (q1, q2, q3, q4). The rotation matrix can be obtained from the quater-
nion by

R(q) =





q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3



 . (7.7)

7.2 SfM using EKF 67

The unit constraint of the quaternion cannot be enforced in the linearization
of the Kalman filter. Therefore the incremental Euler angles (ωX , ωY , ωZ) are
used to estimate interframe rotation. At each time step the global rotation
quaternion is updated using qk = qk−1 + δq, where

δq = (
√

1 − ǫ, ωX/2, ωY /2, ωZ/2) (7.8)

ǫ = (ω2
X , ω2

Y , ω2
Z)/4. (7.9)

The coordinate transformation from the first frame to the current then becomes




XC

YC

βZC



 =





1
1

β



R(q)





X
Y
Z



 +





tx
ty
βtz



 . (7.10)

7.2.4 The Kalman Filter

The state vector x̄ in the Kalman filter will consist of the parameters for trans-
lation, rotation, focal length and structure for each of the N points:

x̄ = (tX , tY , tZβ, ωX , ωY , ωZ , β, α1, α2, . . . , αN). (7.11)

The function (û1, v̂1, û2, v̂2, . . . , ûN , v̂N) = hk(x̄) in Equation (7.1) is essentially
the concatenation of Equations (7.4), (7.10) and (7.3). This is illustrated in
Figure 7.5. The first frame coordinates, (X,Y,Z), are calculated, then rotated

Figure 7.5: To obtain the current image coordinate prediction (û, v̂), the following
calculation is made: The image coordinates in the original frame (u0, v0) and the
depth (α) are used to get (X, Y, Z). This point is then moved using R(q) and t to get
the point (Xc, Yc, Zc), which is projected using f = 1

β
to (û, v̂). All these operations

make up the function (û, v̂) = h(x̄).

and translated to (XC , YC , ZC), and finally projected to provide an estimate,
(û, v̂), of the image location of the feature point. The measurement vector z̄ is
simply the measured image coordinates of the feature points,

z̄ = (u1, v1, u2, v2, . . . , uN , vN). (7.12)

68 SfM for Tracking

The dynamics function fk(x̄) is trivially chosen to be the identity fk(x̄) = x̄.
Thus the motion between frames is modeled as noise. The state estimate x̂ is
then updated using

x̂k = x̂k−1 + Kk(z̄k − hk(x̂k)), (7.13)

where Kk is defined as in Appendix C.

7.3 Multilinear Constraints

As mentioned in the beginning of this chapter, the most widely used approach
for SfM is not based on Kalman filtering, but on multilinear constraints. To be
able to compare the methods, a small introduction to the multilinear approach
is given here.

Multilinear constraints have proved to be useful tools for solving the SfM prob-
lem [22, 7, 31, 58, 29]. They elegantly provide a linear solution to a fundamen-
tally non-linear problem, and can also be used to restrict the search area for
additional feature points. Moreover, they can be used on images from uncali-
brated cameras, i.e., cameras where intrinsic parameters such as focal length,
skew, aspect ratio and principal point position are unknown. The method works
along the following lines:

1. The coefficients of the multilinear constraint are calculated from the image
coordinates of the points.

2. Possible parameters (both intrinsic and extrinsic) of the cameras are cal-
culated.

3. Triangulation is used to find possible three-dimensional positions for the
points.

Note that neither the camera parameters obtained in step 2, nor the three-
dimensional positions of the points obtained in step 3, are necessarily the true
ones. However, they differ from the correct values only by a projective trans-
formation that is the same for all cameras and points. The terminology used is
that the solution is known up to a projective transformation. By adding more
constraints, e.g., that the intrinsic camera parameters are constant over several
images, it is possible to upgrade, or stratify the solution up to scale, which is as
far as it is possible to come [29].

This section will concentrate on step 1, i.e., the calculation of the coefficients of
the multilinear constraint. The investigation will also be limited to the simplest
version of the multilinear constraints, the bifocal tensor constraint, which can
be conveniently expressed using the Fundamental matrix.

Before going into details with the Fundamental matrix, a small introduction
to the projective camera model is given.

7.3 Multilinear Constraints 69

7.3.1 Projective Camera Model

By using homogenous coordinates, Equation (7.2) can be compactly written as

λx = PCXC, (7.14)

where XC = (XC , YC , ZC , 1)T are the homogeneous coordinates of the three-
dimensional point in the coordinate system of the camera, and x = (x, y, 1)
are the homogeneous coordinates of its two-dimensional projection in the image
plane. The matrix PC , called the camera matrix, equals

PC =





f 0 0 0
0 f 0 0
0 0 1 0



 , (7.15)

which, if used in Equation (7.14), gives the three equations

λx =fXC

λy =fYC

λ =ZC .

(7.16)

With the help of the last equation, the first two equations of Equation (7.16)
correspond to Equation (7.2). A rigid transformation moves from the coordinate
system of the camera to that of the world:





XC

YC

ZC



 = R









X
Y
Z



 − c



 , (7.17)

where X = (X,Y,Z) are the coordinates in the world coordinate system, R
is a rotational matrix and c is the position of the camera’s COP in the world
coordinate system. This yields









XC

YC

ZC

1









=

[

R −Rc

0 1

]









X
Y
Z
1









, (7.18)

which combined with Equation (7.14) gives

λx = PX, (7.19)

where

P =





f 0 0
0 f 0
0 0 1



 [R| − Rc] . (7.20)

For more general cameras, where the intrinsic camera parameters are not known,
P can be written

P = [A| − Ac] , (7.21)

70 SfM for Tracking

or simply
P = [A|b] , (7.22)

where A is an nonsingular 3 × 3 matrix and b is a 3 × 1 vector representing
translation.

7.3.2 Derivation of the Fundamental matrix

The fundamental matrix was presented by Faugeras [21] as an uncalibrated ver-
sion of the essential matrix from Longuet-Higgins [44]. The following derivation
of the fundamental matrix follows the one by Heyden and Åström [32]. Given a
stereo pair of cameras, let Pl represent the “left” camera and Pr represent the
“right” camera. Then Equation (7.19) becomes

λlxl = PlX

λrxr = PrX
(7.23)

where xl and xr are the homogenous image coordinates. These equations can
be rewritten as

λlxl = [Al|bl]X = Al





X
Y
Z



 + bl (7.24)

λrxr = [Ar|br]X = Ar





X
Y
Z



 + br. (7.25)

Solving Equation (7.24) for (XY Z)T yields (XY Z)T = A−1
l (λlxl −bl) which is

inserted into Equation (7.25)

λrxr = ArA
−1
l (λlxl − bl) + br. (7.26)

Using
a = ArA

−1
l xl (7.27)

and
t = br − ArA

−1
l bl, (7.28)

yields
λrxr = λla + t. (7.29)

Thus the vector λrxr is a linear combination of the two other vectors, i.e., the
three vectors are contained in the same plane as illustrated in Figure 7.6. The
normal n of the plane can be obtained by taking the cross-product between t

and xr, n = t × xr or
n = Ttxr, (7.30)

where Tt is a 3× 3 matrix that performs the cross-product. The condition that
a is contained in the plane can now be written

aT n = 0. (7.31)

7.3 Multilinear Constraints 71

xr

λl a

xrrλ
t

n

Figure 7.6: The three vectors a, t and xr are all contained in the same plane.

Substituting a = ArA
−1
l xl and n = Ttxr gives

(ArA
−1
l xl)

T Ttxr = 0. (7.32)

Rearranging yields
xT

l A−T
l AT

r Ttxr = 0, (7.33)

which can be written
xT

l Fxr = 0, (7.34)

where F = A−T
l AT

r Tt is the fundamental matrix. Since the right hand side
of Equation (7.34) is zero, the fundamental matrix is only defined up to scale.
Adding the constraint

||F ||F = 1 (7.35)

gives a unique solution1.

7.3.3 Estimation of F , A and b

Continuing along the lines of [32]; Equation (7.34) is linear in the coefficients of
F , and can hence be rewritten as mkFvec = 0, where

mk =
(

xlxr xlyr xl ylxr ylyr yl xr yr 1
)

(7.36)

for point k and Fvec is a vector containing the elements of F . Using (mk)8k=1

from eight different point correspondences as rows in the matrix M yields

MFvec = 0, (7.37)

which can be solved for Fvec using singular value decomposition (SVD). Since the
world coordinate system in unknown, it is possible to choose Al = I and bl = 0.
F then becomes AT

r Tt, and a valid Ar and Tt can be found by decomposing
F into one non-singular and one skew-symmetric matrix. Decomposing F with
SVD gives F = UΣV , were Σ = diag(a, b, 0). By using the two decompositions
Σ = Σ1T1 and I = QQ−1, where

Σ1T1 =





a 0 0
0 b 0
0 0 c









1 0 0
0 1 0
0 0 0



 and QQ−1 =





0 1 0
−1 0 0
0 0 1









0 −1 0
1 0 0
0 0 1



 ,

(7.38)

1The subscript F here stands for the Frobenius norm, ||A||F =
√

∑

i,j a2
ij .

72 SfM for Tracking

F can be rewritten
F =UΣ1T1V

F =UΣ1QQ−1T1V

F =UΣ1QV V T Q−1T1V.

(7.39)

If c is selected so that det(Σ1) = 1, UΣ1QV is a non-singular matrix and can
be identified as AT

r . Likewise, V T Q−1T1V is a skew-symmetric matrix that can
be used as Tt, which in turn is used to obtain br.

7.3.4 Image-to-Image Homography

As shown in Figure 7.7, a point (XY Z)T belonging to plane π can be expressed

X
P

PY

COP

(X Y Z)

(x y)

π

Figure 7.7: Coplanar points; all points (XY Z)T belong to the plane π.

through its plane coordinates XP = (XP , YP , 1) as

(XY Z)T = XP ēxp + YP ēyp + cp, (7.40)

where ēxp and ēyp are two non-parallel vectors in π and cp is a point in π.
Representing again the left and right camera with λlxl = PlXl and λrxr = PrXr

respectively and using Equation (7.24), gives

λlxl = Al











X
Y
Z



 + A−1
l bl







. (7.41)

Inserting (7.40) gives λlxl = Al

{

XP ēxp + YP ēyp + cp + A−1
l bl

}

, which can be
written on matrix form

λlxl = Al





| | |
ēxp ēyp cp + A−1

l bl

| | |









XP

YP

1



 = AlBlXP = HlXP . (7.42)

Here Bl (and thus Hl) is non-singular as long as the COP is outside the plane π.
The relation λlxl = HlXP between the plane coordinates and the (left) image
coordinates is called a homography. A similar relationship λrxr = HrXP is
available for the right camera. Combining these yields

λxl = Hxr, (7.43)

7.3 Multilinear Constraints 73

where H = HlH
−1
r and λ = λl

λr
. Thus there exists a homography also between

the coordinates of the left and right image, here called the image-to-image ho-
mography.

74 SfM for Tracking

Chapter 8

Degeneracies

In this chapter, the behavior of the SfM algorithms presented in the last chapter
will be examined for degenerate situations, more specifically when the motion
is purely rotational or when the object is planar. Both these degenerate cases
are important for head tracking: The motion of the head might be close to a
pure rotation (just keeping the head still is a special case of this), and random
points on the surface of a face might be close to co-planar. The behavior of
algorithms based on multilinear constraints for these cases is well documented
[61, 28, 70, 22], but will be repeated here as a background. The fact that the
EKF-based SfM algorithm can recover motion from sequences with pure rotation
is also known [8]. It is less well known how the EKF-based algorithm behaves in
the case of planar objects, and this investigation is the main goal of this chapter.

The first section will go through the behavior of multilinear constraint based
algorithms for pure rotation and planar structure. After this, the EKF-based
SfM algorithm will undergo the same investigation.

8.1 Pure Rotation and Multilinear Constraints

Recovering three-dimensional structure from two images taken with cameras
too close to each other is inherently an ill-posed problem. As the base line,
i.e., the distance between the two cameras’ centers of projection decreases, tri-
angulation gets increasingly numerically unstable. However, as pointed out by
Faugeras [22], it is still possible to calculate the relative motion (in this case,
the rotation) between the two cameras. Figure 8.1 illustrates a situation where
there is only in-plane rotation between the two cameras, i.e., there is no trans-
latory motion and the cameras both have the same COP and principal point
(the projection of the COP onto the image plane). From this figure it is evident
that it is impossible to obtain depth information about any point X on the
object. However, it is equally evident that it should be possible to estimate the
motion (in this case, the rotation angle θ) between the two cameras. Examining

76 Degeneracies

COP

P

π

π
1

2

X

θ

Figure 8.1: A degenerate motion case — the cameras COPs overlap. Evidently,
it is not possible to obtain any depth estimate of any point X on the object, but
it should be possible to estimate the relative rotation θ between the two cameras.

Equation (7.28)
t = br − ArA

−1
l bl, (8.1)

gives that t is in fact the base line vector, expressed in the coordinate system
of the right camera. Thus, if the base line t is zero, Equation (7.29) becomes

λrxr = λla. (8.2)

That is, a and x lie on the same line, as illustrated in Figure 8.2. Since a line

λl a xrrλ

n

p

Figure 8.2: When the base line t is zero, the vectors a and xr are parallel. Thus
an arbitrary vector p can be used to construct the plane.

and a vector always lie in a plane, an arbitrary vector p can be used to create
the normal n = p × xr = Ppxr. Equation (7.33) now becomes

xT
l A−T

l AT
r Ppxr = 0, (8.3)

and F = A−T
l AT

r Pp. Of course another vector p2 can be used — yielding a

different matrix F2 = A−T
l AT

r Pp2
— and there are thus in fact an infinite num-

ber of matrices F that satisfy the expression in Equation (7.34). Since p2 has

8.2 Planar Objects and Multilinear Constraints 77

three degrees of freedom, F2 is not simply a scaled version of F . Adding the
constraint (7.35) will thus not be sufficient for uniqueness. Therefore it is not
a well-posed problem to identify the elements of F when the COPs overlap. In
practice, numerical instabilities will occur not only when t equals zero but for
all small t.

8.1.1 Avoiding Ill-Conditioning

In a real head-tracking scenario, it is very plausible that the head sometimes
moves insignificantly or not at all. Since t = 0 in this case, this common
situation is in fact degenerate. A robust SfM system should recognize when
the motion is degenerate and avoid trying to estimate the coefficients of the
multilinear constraint in those cases. For the case of pure rotation between the
left and right image, it turns out that, just as in the case of coplanar points,
there exists a homography between the coordinates,

λxl = Hxr. (8.4)

The matrix H is the same for any pair of corresponding image points xl and xr.
If the object is known to be non-planar, Equation (8.4) can be used as a test on
the motion. If it holds, the motion is regarded degenerate and the rotation is
calculated from the homography. If it is violated, the motion is non-degenerate
and the fundamental matrix can be estimated. It is also possible to do global
motion estimation based on Equation (8.4): If the motion estimation provides a
good estimation of the next frame, motion is deemed to be degenerate, whereas
if it is a poor estimation, motion is non-degenerate. Such a method is used in
[49], but is batch oriented and thus not directly applicable to the recursive case.

8.2 Planar Objects and Multilinear Constraints

Planar objects are important for two reasons. First, man-made structures con-
tain many planar objects such as walls, floors, desks and so forth. Second, some
objects might be close to planar. In the case of face tracking for instance, a
small number of randomly picked points on the surface of the face might be
close to coplanar. If the SfM algorithm fails for planar objects, it is likely to
do poor on such nearly planar objects. It is a well-known fact that planar ob-
jects constitute a singular case that SfM algorithms have problems with. For
methods based on multilinear constraints, these problems manifest themselves
in the estimation of the multilinear coefficients [70, 61, 28]. In the case of the
fundamental matrix for instance, Equation (7.34) will have an infinite number
of solutions and will not be solvable without additional constraints, as shown
below:

Theorem 1 If all points lie on a plane, and there exists a solution F0 to the
fundamental matrix equation xT

l F0xr = 0, then F0+Fs is also a solution, where

78 Degeneracies

Fs = GsH, H is the image-to-image homography (λxl = Hxr), and Gs is any
antisymmetric matrix Gs = −GT

s .

Proof 1 Starting with the fundamental matrix equation,

xT
l F0xr = 0, (8.5)

(7.43) is used to obtain
xT

l F0H
−1xl = 0. (8.6)

The lambda is excluded since it does not affect the right hand side. Now, take
an arbitrary vector s to create the cross-product matrix Gs|Gsy = s × y. Gsxl

is thus orthogonal to xl, so
xT

l Gsxl = 0, (8.7)

which is added to (8.6):

xT
l F0H

−1xl + xT
l Gsxl = 0. (8.8)

Using Fs = GsH (and thus FsH
−1 = Gs), this can be rearranged to

xT
l F0H

−1xl + xT
l FsH

−1xl = 0, (8.9)

and further to
xT

l (F0 + Fs)H
−1xl = 0, (8.10)

which, by using (7.43), can be simplified to

xT
l (F0 + Fs)xr = 0, (8.11)

and that completes the proof.

Again, since Gs has three degrees of freedom, it is easy to see that F0 +Fs ≁ F0,
and adding the constraint (7.35) is not sufficient for uniqueness. Thus, when all
points lie on a plane, it is not possible to identify the elements of the fundamental
matrix from Equation (7.34). As in the case with overlapping COPs, numerical
instabilities will occur when points are close to coplanar. Stein and Shashua
show that this is also true for objects made up of several planes that intersect in
a single line, and also point to several real world objects that fit this description
[61].

8.2.1 Adding Calibration Constraints

If constraints on the camera parameters are added to the multilinear constraints,
the solution becomes unique. In the calibrated case for instance, F can be writ-
ten F = RT Tt, where R is a rotation matrix and Tt is an antisymmetric matrix
representing translation. This additional constraint in combination with Equa-
tion (7.34) is sufficient for the estimation of F . However, instead of the appealing
linear simplicity of Equation (7.37), the equations become non-linear.

8.3 Pure Rotation and EKF-based SfM 79

A similar solution should also be possible in the trilinear tensor case. Since one
more image is used, it should be possible to also recover one camera parameter,
e.g., the focal length. However, the equations will be even more complicated
than in the two-view case. The method is also a deviation from the strategy of
first finding a projective solution and then stratifying it to a Euclidean one.

8.2.2 Known Planar Structure

If the object is known a priori to be planar, specific techniques can be used to
recover the structure. Instead of estimating the fundamental matrix, Wunder-
lich estimates the image-to-image homography between two images in the fully
calibrated case [75]. The homography is then used to calculate the structure
and motion. Triggs generalizes this to the non-calibrated case [71], where more
images are needed. Using several image-to-image homographies, Triggs esti-
mates structure, motion and camera parameters using non-linear optimization.
Triggs also shows that, when n intrinsic camera parameters are unknown (but
constant),

m = ⌈n + 4

2
⌉ (8.12)

images are needed for reconstruction of the Euclidean solution [71]. This is valid
for any SfM algorithm in the case of planar objects.

A solution to the SfM problem can be to use the multilinear constraints only if
dealing with a general three-dimensional object, and use a specific technique if
the object is planar. If the motion is known not to be purely rotational, it is
possible to distinguish planar objects from general ones by using the image-to-
image homography

λxl = Hxr (8.13)

as a test. If it is violated, the structure is general and the normal multilinear
approach can be used. If it is satisfied, the object is planar, and techniques such
as the one by Triggs [71] can be used.

8.3 Pure Rotation and EKF-based SfM

Azarbayejani and Pentland evaluate their algorithm for rotational, parallel and
axial motion using a Monte Carlo experiment [8]. Pure rotation (rotation around
COP), which is a degenerate form of motion, is also investigated using the same
methodology. The rotational component is found to be correctly recovered,
whereas the structure obviously cannot be recovered (see Section 8.1 and Fig-
ure 8.1).

8.4 Planar Objects and EKF-based SfM

The following part of this chapter analyzes the extended Kalman filter approach
to the Structure from Motion problem for the case when all points of the object

80 Degeneracies

belong to a plane. It is shown that, even though the Kalman filter is under-
constrained in each time step, it will most often converge to the correct solution.
A tentative version of this work was published by the author in [69] but treated
only the noise free case.

Three ways to analyze the problem are used. The first way is to look at the SfM
problem as a minimization problem and investigate numerically whether the
true solution corresponds to a valid minimum. The second way is to use Triggs’
formula (Equation (8.12)), and the third way is to do Monte Carlo experiments
on synthetic data to see how often the algorithm converges.

8.4.1 Analysis

If only the first and the kth views are considered, the SfM problem can be
formulated as the problem of finding the state vector x which minimizes the
(scalar) error function

Jk(x) = (zk − hk(x))T (zk − hk(x)) (8.14)

where hk(x) consists of the Kalman filter’s estimate of the projected points
(û1, v̂1, û2, v̂2, . . . , ûN , v̂N). If the correct solution x = x∗ is known, Jk(x) can
be Taylor expanded around x∗ according to

Jk(x) ≈ Jk(x∗) +
∂Jk(x∗)

∂x
(x − x∗)+

+
1

2
(x − x∗)T ∂2Jk(x∗)

∂x2
(x − x∗).

(8.15)

If the Hessian ∂2Jk(x∗)
∂x2 is positive definite, x∗ will be a local minimum to Jk(x∗),

which means that, locally, there is no x that minimizes Jk(x) as well as x∗ does.
The goal of the analysis is to calculate the Hessian at x∗ for a number of point
constellations, and analyze if it is positive definite or not. A positive definite
Hessian indicates that the function has a unique optimum (at least locally),
whereas a Hessian which has one or more eigenvalues of zero will allow an entire
manifold of solutions x that will minimize the cost function Jk(x) just as well
as the known optimum, x∗, will. Note that a positive definite Hessian in x∗

only shows the uniqueness of the solution locally for a particular point constel-
lation, motion and focal length. Nevertheless, these particular cases can help to
understand how it works generally.

Differentiating Equation (8.14) yields

∂2Jk

∂x2
= 2

∂hk

∂x

T ∂hk

∂x
+ 2

∑

k

∂2hk

∂x2
(hk(x) − zk). (8.16)

Note that if the measurements are perfect, hk(x∗) = zk and the second term

of Equation (8.16) is zero. Hence, in x∗, ∂2Jk

∂x2 can be conveniently calculated

8.4 Planar Objects and EKF-based SfM 81

as 2∂hk

∂x

T ∂hk

∂x
. Since Jk(x) ≥ 0, negative eigenvalues are impossible, and the

Hessian is thus positive definite unless it has a zero-valued eigenvalue. This
combined with the fact that the Hessian is symmetric means that its eigenvalues
will equal its singular values. Hence it suffices to investigate if the Hessian has
any singular values that are zero. Since α1 ≡ 1.0 for scaling reasons, Jk(x) is
no longer a function of α1 and the corresponding column must be removed from
∂hk

∂x
before calculating ∂2Jk

∂x2 .

8.4.2 Two Views of a Three-Dimensional Object

A random three-dimensional object containing 16 points has been rotated and
translated randomly to produce two-dimensional measurements that are fed into
a SfM EKF. After rotating and translating the object to a new position, the

Hessian ∂2Jk

∂x2 is calculated in the known optimum point x∗, and is decomposed
using SVD. The singular values are plotted in the left part of Figure 8.3. The

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Figure 8.3: Singular values for the Hessian of Jk(x) in x
∗. Left: a 3D object. Right:

an object where all points lie in a plane.

smallest singular value is at around 10−5, so it is fair to say that the Hessian is
positive definite.

8.4.3 Two Views of a Planar Object

The right diagram in Figure 8.3 shows the result from repeating the experiment
with points that lie in a plane. The smallest singular value is now 10−17 —
several orders of magnitude smaller than the others — practically zero. Thus,
locally, there exists a curve xk(t) for which Jk(xk(t)) = 0. Each point on this
curve represents a false solution to the SfM problem. An example of a false
solution is shown in Figure 8.4, obtained by letting the filter converge and then
deliberately go in the direction corresponding to the zero valued singular value.
The two leftmost images are the ones that are part of the optimization function
Jk(x), namely the first image and the kth image. The crosses (estimated points)
fit nicely into the circles (true points). It is not until a third view is seen, (the

82 Degeneracies

rightmost image in Figure 8.4), that it becomes evident that this solution is
false.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 8.4: A false solution. The image of the real object is marked with circles,
and the reconstructed object is marked with crosses (they appear almost as filled circles
in the first two diagrams). In the 1st and the kth image (left, middle), they match
(Jk(x) = 0), but from another view (right) it is obvious that the solution is false.

8.4.4 Three Views of a Planar Object

As seen above, two views of a planar object with unknown focal length is not
sufficient for a unique solution of the SfM problem. This is consistent with the
results by Triggs [71]: Since n = 1, (the focal length is the only unknown intrinsic
parameter), ⌈ 1+4

2 ⌉ = 3 images are needed. To investigate the case m = 3 for the
EKF method, a modified Kalman filter is constructed that considers not only
the current image, but also the previous one. The state vector in Equation (8.17)
is thus extended with another six degrees of freedom (t2X , t2Y , t2Zβ, ω2

X , ω2
Y , ω2

Z)
for the camera motion of the previous image:

xe = (t2X , t2Y , t2Zβ, ω2
X , ω2

Y , ω2
Z ,

tX , tY , tZβ, ωX , ωY , ωZ ,

β, α1, α2, . . . , αN).

(8.17)

The measurement vector is the concatenation of the two latest measurements,

ze
k = [zk|zk−1] . (8.18)

Analogously with Equation (8.14) and Equation (8.16),

Je
k(x) = (ze

k − he
k(xe))T (ze

k − he
k(xe)) (8.19)

and
∂2Je

k(xe∗)

∂xe2
= 2

∂he
k

∂xe

T ∂he
k

∂xe
. (8.20)

An experiment with a planar object using this modified Kalman filter has been

8.4 Planar Objects and EKF-based SfM 83

carried out. Rather big steps in the camera motion are taken in order to get rea-
sonably different views. The Hessian is calculated and decomposed using SVD.
In Figure 8.5 the singular values for such an experiment is shown. Note that
the smallest singular value is about 10−4, far greater than the 10−17 obtained in
the two view case, and the Hessian in the known optimum xe∗ is thus positive
definite. This means that, locally, there is no other constellation of points and

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Figure 8.5: Singular values for the Hessian in x
e∗ of the extended error function

Je
k(x).

camera positions that will generate zero error.

8.4.5 Several Views of a Planar Object

The Extended Kalman filter approach to the SfM problem does not rely on only
two or three images, but instead it takes an entire sequence of images into ac-
count. Whether the (non-modified, two-view-) filter will converge for a planar
object is not obvious: On the one hand, the previous section indicates that three
images are enough for uniqueness. On the other hand, the constraints of all the
images are not applied simultaneously; at each time step k, the problem will be
under-determined and a manifold of false structures will be possible. To resolve
this a Monte Carlo experiment is conducted. Random points are selected from
a randomly oriented planar object of size 0.5×0.5 area units. The object under-
goes random motion and the point measurements are forwarded to the Kalman
filter. The filter runs for 1000 frames and if the summed squared error between
the estimated depth values and the real ones is smaller than 0.1, convergence
is declared. The experiment is repeated 1000 times using two types of motion:
Rotation around a random vector in the z = 0 plane (to avoid the degener-
ate rotation around the z-axis) and “Brownian motion”, i.e., small incremental
random steps in translation and rotation. The filter is initialized with β = 2.0
(the true value is β = 1.3). Three types of initialization procedures are tried for
the depths α1...N−1: In the first type, called “prior 1”, the α-values are set to
random values in the interval ±0.5 around the depth α0 which is fixed to 1.0. In
the second type, called “prior 2”, the filter is initialized with the true α-values
plus random noise in the interval ±0.5. The last one, “prior 3,” is equivalent to

84 Degeneracies

prior 1 prior 2 prior 3

2D rot 0.673 0.953 1.000
3D rot 0.796 1.000 1.000

2D brown 0.751 0.972 1.000
3D brown 0.762 1.000 1.000

Table 8.1: Depth convergence frequency for noise free measurements. N = 1000,
σ ≤ 0.016.

prior 1 prior 2 prior 3

2D rot 0.656 0.898 0.987
3D rot 0.802 0.995 1.000

2D brown 0.508 0.851 0.924
3D brown 0.478 0.943 0.981

Table 8.2: Depth convergence frequency for noisy measurements. N = 1000,
σ ≤ 0.016.

“prior 2” but with noise in the interval ±0.25.

The entire experiment is then repeated for a three-dimensional object obtained
by randomly sampling points from a 0.5 × 0.5 × 0.5 cube and then rotating
those points randomly. This time, “prior 1” will mean that all the α-values are
initialized to the same value 1.0, whereas the “prior 2” and “prior 3” will mean
that the α-values are initialized to the correct value plus random noise in the
interval ±0.5 and ±0.25 respectively.

The result is shown in Table 8.1 for the case of noise free measurements. As can
be seen, there are differences between the planar (2D) and the general (3D) ob-
jects, but as the quality of the depth prior improves, the convergence frequency
goes to unity for both types of objects. In the case of noisy measurements, the
difference is larger. In Table 8.2, uniformly distributed noise of one pixel vari-
ance is added to the measurements (one pixel equals a 1/160th of the distance
from the image center to the right hand image border). Still, the difference is
quantitative, not qualitative. One example is when tracking a planar object
undergoing Brownian motion, with depth prior 3 (third row, third column). In
this case one has at least as much to gain by changing the motion to rotational
as by changing the planar object to a general three-dimensional one (conver-
gence frequency rises to 0.987 compared to 0.981). Hence, a planar object is not
a catastrophic situation that means that the SfM algorithm will unconditionally
fail. Rather, planar objects can be seen as something that should be avoided
if possible, just like measurement noise, poor depth priors or low excitation
in the motion. This is illustrated in Figure 8.6. If the noise-, shape-, prior-

8.4 Planar Objects and EKF-based SfM 85

Figure 8.6: The convergence of the EKF based algorithm depends on the noise- shape-
prior- and motion-excitation conditions. For simplicity only the first three axes are
drawn in the figure.

and motion-excitation conditions are good enough, the algorithm will converge.
Even a completely planar object will converge if the other conditions are good.

A way to understand how the filter converges for planar views is the follow-
ing. Each new image k gives a new constraint Jk(x) = 0, which will be satisfied
by an entire curve of false solutions xk(t). If this curve is projected down
to only the structure components of x, a new curve sk(t) is obtained, where
s = (β, α1, α2 . . . αN). Since the solution is unique for three views, sk(t) and
sk+1(t) cannot be the same curve, and must meet in the point s∗ that repre-
sents the correct structure. This is illustrated in Figure 8.7. The estimate ŝ

s (t)k+1s (t)k

 s*

k+1ŝ

k-1ŝ
kŝ

Figure 8.7: Structure Convergence

will move towards the curves, but for each new image the curve has moved and
ŝ will continue moving until it has found the optimum. This should result in
a slower convergence than in the over-determined case, and this has also been
verified experimentally: The top diagram in Figure 8.8 shows a histogram over
how many frames are needed to have a sum squared depth error of 0.05 for
rotational motion. In the bottom diagram, a similar histogram is drawn for
Brownian motion. It is clear that the general three-dimensional objects (solid
curve with crosses) converges faster than the planar ones (dotted curve with
circles), but in this case the type of motion seems to have a bigger impact on

86 Degeneracies

the convergence time than has the shape of the object.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

Number of iterations before convergence

F
re

qu
en

cy

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

Number of iterations before convergence

F
re

qu
en

cy

Figure 8.8: Top: Histogram over convergence time for rotational motion with a general
object (solid) and a planar object (dotted). Bottom: Ditto for Brownian motion.

In fact, the extended Kalman filter does not only try to minimize Equation (8.14)
at each frame, but also takes into account the covariances of the measurements
and of the state vector from the previous frame. This further constrains the
solution x̂k obtained at time k and prevents it from moving to a point too far
away in the state space, even if the error function Jk(·) happens to be zero there.

8.4.6 Using the Three-View Filter

The modified three-view filter in Equation (8.17) was introduced to investigate
whether three images would be sufficient for a unique solution of the EKF based
algorithm. However, it can also be used in lieu of the two-view filter for estimat-
ing structure and motion. Since the modified filter fuses the information of three
views, it should be over-determined in theory. In practice, however, the two last
views are often quite similar to each other, which means that the smallest sin-
gular value will still be quite small, and the results should not differ much from
those of the two-view filter. This has been validated experimentally: Table 8.3
shows the convergence frequencies for rotational motion in the case of noise for
both the two-view filter (top) and the three-view filter (middle). Performance
is slightly worse for prior 1, slightly better for prior 2, and roughly equal for
prior 3. Increasing the number of frames between the two measurements in
Equation (8.18) increases the chance that “enough” motion has occurred. This

8.5 Conclusions 87

prior 1 prior 2 prior 3

2 view filter: frame 0 and k 0.656 0.898 0.987
3 view filter: frame 0, k − 1 and k 0.628 0.924 0.982
3 view filter: frame 0, k − 8 and k 0.627 0.856 0.964

Table 8.3: Comparison of depth convergence frequency for the two-view filter and two
types of three-view filters for noisy measurements. N = 1000, σ ≤ 0.016.

can increase the smallest singular value substantially. In the example in Sec-
tion 8.4.4 where large motion was used between the measurements, the smallest
singular value of 10−4 was actually bigger than that of the non-planar object
in Section 8.4.2. Experimentally however, no gain in convergence frequency has
been observed. The last row of Table 8.3 shows results from a three-view filter
that considers frame number 0, k − 8 and k. The motion between frame k − 8
and frame k is much bigger than that between frame k − 1 and k, but that is
not reflected in better convergence frequencies. On the contrary; convergence
results (bottom row) are worse than for the one-image-difference filter (middle
row) for all three priors, and also worse than for the two-view filter (top row).

8.5 Conclusions

This chapter has provided an analysis of how different SfM algorithms behave
for pure rotation and planar objects. As is known from the literature and has
also been seen here, the coefficients of the multilinear constraints cannot be
estimated from the linear equations only in these cases [70, 61, 28].

Table 8.4 summarizes SfM algorithms for planar objects. As seen in the first
column, projective reconstruction from multilinear constraints is not possible in
the uncalibrated case. Note that in all cases where reconstruction is possible
(marked with “yes”), the algorithms either only work for planar objects (*) or
are non-linear (**). For instance, the methods by Wunderlich [75] and Triggs
[71] work only for objects that are known to be planar.

If the object is known not to be planar, the image-to-image homography can
be used to determine if the motion is purely rotational. If so, the rotation can
be recovered from the homography, otherwise the normal multilinear approach
can be used.

If the motion is known not to be purely rotational, the image-to-image ho-
mography shows if the structure is planar. If it is, Triggs’ method can be used,
otherwise normal multilinear constraints will work.

If it is not known whether the structure is planar or the motion is purely rota-
tional, the situation is more complicated. If the homography is satisfied, it can

88 Degeneracies

Projective rec. from Euclidean reconstruction
multilinear constr.

(uncal.) uncal. f unknown calibr.

2 views no no no yes
[71] [71] (b)∗∗

↑ [75]∗

3 views no no yes ↓
[28, 61] [71] [71]∗,∗∗ yes

5 views yes yes yes
and more n/a [71]∗,∗∗ (a)∗∗ (a)∗∗

[71]∗,∗∗ (b)∗∗

[75]∗

Table 8.4: SfM algorithms that work for planar surfaces. A cell is marked with “yes”
if reconstruction is possible in this case, and with “no” otherwise, with references in
brackets. Symbols: (a) Using EKF as shown in this chapter. (b) Using calibration
constraints such as in Section 8.2.1. * Method only works for planar objects. **
Non-linear method. ↑, ↓ Result can be derived from neighboring cell.

be due either to planar structure or to rotational motion. Torr et al. [70] disam-
biguates between the two types of degeneracies by using the three-dimensional
structure of the points, but this works only if the structure has already been
obtained.

The Kalman based method can recover motion parameters from pure rotation
[8]. Obviously the structure cannot be estimated if all motion in the sequence
is purely rotational, but keeping the object still in the middle of an otherwise
normal sequence will not destroy the estimates of structure and motion. Planar
objects create a situation where the filter is under-determined in each step, mak-
ing the SfM algorithm less robust and slower to converge. However, it will still
converge if the characteristics of the noise, prior and motion are good enough.
The fact that the same algorithm can be used for both planar and non-planar
objects means that it will also work for near-planar objects. The recursive struc-
ture of the Kalman filter is well suited for tracking, where sequences can be very
long. The probabilistic formulation also makes it easy to model measurement
noise. The non-linearity of the method is a drawback but, as seen in Table 8.4,
no linear methods exist in the planar case except for [75], which only works for
planar objects in the fully calibrated case. For these reasons, the Kalman based
SfM algorithm is the method of choice in this thesis.

Chapter 9

Disappearing and

Appearing Points

This chapter treats how to cope with disappearing and appearing points. An ex-
tension of the SfM algorithm from Chapter 7 is presented that makes it possible
to add points that are not visible in the first frame. This work was published
as a technical report [67]. Later, Dell’Acqua et al. have addressed the same
problem [1]. Their solution is quite different and will be commented on in the
end of this section.

9.1 Disappearing Points

In this thesis, the SfM algorithm will be used to help the tracking of points on
the surface of the head. As the head turns, some points will disappear. The
head is likely to turn back at a later stage, and the points will reappear. An
example of this is shown in Figure 9.1, where the left side of the user’s head
disappears (middle) and reappears later (right). Therefore, rather than remov-

Figure 9.1: Images number 50, 150 and 200 from an image sequence. Points on the
left hand side of the head will first disappear (middle image) and then reappear later
(right-most image)

ing the disappearing points from the SfM algorithm altogether, it is favorable

90 Disappearing and Appearing Points

if they can be ’put on hold’ until they reappear. This can be done conveniently
in the Kalman framework by assigning an (effectively) infinite variance to the
points that are currently occluded. The three-dimensional head model can be
used to decide whether or not a point is occluded.

9.2 Appearing Points

If the head turns enough, all points will get occluded. It is thus essential that
the algorithm is able to include some of the new points that have appeared. For
instance, when the head turns sideways, points on the ear can be used. The
rest of this chapter will treat how points can be added to the EKF based SfM
algorithm.

As described in Section 7.2.2, the function hk(·) uses the image coordinates
in the first frame, (u0, v0), to calculate (X,Y,Z), (XC , YC , ZC) and then the
estimate (û, v̂). The fact that (u0, v0) must be known in order to calculate the
filter estimates poses a problem when adding feature points at a later stage. If
a new feature point becomes visible first at frame k, its image plane projection
in the original reference frame (u0

new, v0
new) is not known.

9.2.1 Old Reference Frame

One way to solve the problem is to rotate and translate back the measurements
from the kth frame to the 0th frame. As can be seen in Figure 9.2 however, the

?

(u ,v ,0)new new
0 0

(X ,Y ,Z)new new new

ZCOP

Y

frame k

frame 0

Figure 9.2: Since the depth of the new point (Xnew, Ynew, Znew) is unknown (upper
black interval), a large bias in (u0

new, v0
new) can be expected.

lack of knowledge of the depth α will result in a large bias in the estimation of
(u0

new, v0
new).

9.2 Appearing Points 91

9.2.2 New Reference Frame

Another solution would be to change the reference frame and restart the Kalman
filter at the kth frame. As can be seen in Figure 9.3 a similar problem to that

Figure 9.3: Since the depth of an old point is not known exactly (lower black interval),
a bias in the position (uk

old, vk
old) in the new reference frame will occur.

of Figure 9.2 occurs: For each “old” point, the image coordinates from the first
frame (u0

old, v
0
old) (solid circle) are replaced with estimates (uk

old, v
k
old) in the kth

frame (middle dashed circle). The depth α is not known exactly, and this creates
a bias in the position of (uk

old, v
k
old) (other dashed circles). Since the filter has

had some time to converge, there is an estimate of α, and the bias of (uk
old, v

k
old)

is thus smaller than with the “old reference frame” method of Figure 9.2. On
the other hand, bias is added to all the old points, compared to only the new
points, which are assumed to be fewer.

9.2.3 Bias Estimation

Both the “old reference frame”- and the “new reference frame” methods will
thus suffer from bias. One solution to this is to include this bias in the state
vector and estimate it using the Kalman filter. Bias estimation was proposed
in the original paper by Azarbayejani and Pentland [8], but not specifically as
a solution to the problem of adding points. Equation (7.4) is then modified to





X
Y
Z



 =





(u0 + bu)
(v0 + bv)

0



 + α





β(u0 + bu)
β(v0 + bv)

1



 , (9.1)

and bu and bv are added to the state vector x. However, introducing these extra
degrees of freedom will make the filter less over-determined. In the “old reference
frame” case, each new point will subtract one degree of freedom from the surplus
created by the parameterization described in Section 7.2.2. In the “new reference
frame” case, each of the old points will have the same effect, which is worse,

92 Disappearing and Appearing Points

assuming that they are more numerous. The problem is somewhat alleviated
by the fact that the α-values are known to a certain extent which means that
the corresponding biases will have smaller variances.

9.2.4 Two Reference Frames

The method proposed in this thesis is to maintain two reference frames, one for
the old points and one for the new ones. As illustrated in Figure 9.3, the old
points will continue to be restricted to the line from the COP to (u0

old, v
0
old),

Figure 9.4: The proposed method — the old points will keep the old reference frame,
whereas the new points will use the new reference frame. No bias due to depth will
occur.

whereas then new points will lie on the line from the COP to (uk
new, vk

new).
The prediction (û, v̂) for the old points will continue to be calculated using (the
projection of) Equation 9.2, whereas the new points will be calculated according
to the projection of





X̂

Ŷ

βẐ



 = BR(q)RT
k









(1 + αβ)uk
new

(1 + αβ)vk
new

α



 − Tk



 +





tx
ty
βtz



 , (9.2)

where B = diag [(1, 1, β)] and Rk and Tk represent the rotation and translation
between frame 0 and frame k.

This approach is still not bias free — estimation errors in the rotation quater-
nion and in the translation vector will give rise to a shift in the texture map used
for the templates and hence a bias in (uk

new, vk
new). However, this problem also

occurs with the other methods. Moreover, in the proposed scheme the rotation
and translation bias only applies to the new points, as opposed to all the old
points in the “new reference frame”-method. As mentioned above, these biases
in u and v can be estimated. Alternatively, the motion parameters QT

k and Tk

can be estimated. This amounts to only 6 extra degrees of freedom for the filter,
which is advantageous to estimating bu and bv if more than 3 points are added

9.2 Appearing Points 93

at once. The implementation of the real system (described in the next chapter),
did not seem to suffer from these biases, and the “two reference frames” method
could be used without extending the feature vector for bias estimation.

9.2.5 Implementational Issues

When new points are added to the extended Kalman filter, the state vector
x must be expanded to include the new α-values. Thus all the matrices that
make up the Kalman filter must be resized. If fixed-sized matrices are used,
this means allocating memory for the new, bigger sized matrices, copying data
from the old matrices and then deallocating them. Using variable sized matrices
solves this problem, but may result in slower matrix operations.

Implementation-wise, it may instead be easier to include the “new” measure-
ments from the start. By setting the variance of the measurements of these
points to (practically) infinite in the beginning, they will not impact the solu-
tion of the Kalman filter. Once the new points are included, (uk

new, vk
new), Rk

and Tk are added to the filter, and the variances are set to normal values. The
filter will then start including these measurements in the solution.

9.2.6 Related Work

Recently, the problem of adding points to the EKF based SfM algorithm has
been investigated by Dell’Acqua et al. [1]. Their solution is to start an in-
dependent Kalman filter each time a new point occurs. After collecting data
from the entire sequence, a single Kalman filter is stitched together from all
the others. Each time a point disappears from the “Master” Kalman filter, all
the “Slave” filters that have been created up to that point are examined for
replacement candidates. The point that will survive the longest is then used to
replace the old point. The “old reference frame” method is used, and the bias
of the new point can be reduced since the depth α can be obtained from the
“Slave” Kalman filter, that has been converging for a while. The “Master” filter
is then continued until a new point disappears, and the procedure is repeated.
No attempt is made to reacquire old points — when they reappear they are
treated as new, unknown points.

Since the above-mentioned method is of batch type it is not well suited for real-
time tracking. It can obviously be modified so that no look-ahead is used, but
even so the use of multiple Kalman filters (one filter for each new point) makes
it a bit computationally expensive for a real-time scenario. Furthermore, just
as in the “new reference frame” method, any remaining error in the estimated
depth α will result in some bias. On the other hand, there are advantages to
having all points in the same reference system. For instance, the extra matrices
for rotation and translation (Rk and Tk) of Equation (9.2) are avoided.

94 Disappearing and Appearing Points

Chapter 10

The Tracking System

This chapter will describe the tracking system in detail. First, the initialization
procedure is described; how feature points are rated and selected. Then, the
matching procedure is treated, followed by a section describing how the variance
of the measurements are estimated and fed to the Kalman filter. The chapter
is concluded with a description of the adaptive texture update.

10.1 Initialization

As mentioned in Chapter 1, this thesis treats the head tracking problem, where
it is assumed that the pose of the head is known in the first frame. When
implementing a real system, however, this pose must be extracted in some way
in order to be able to run the system. In this work, this is done manually. The
user is asked to put the head in a specific position, and orient it so that it is
in a completely frontal position, as illustrated in Figure 10.1. The head should
also occupy a certain area of the screen before tracking is initialized.

(a) (b) (c)

Figure 10.1: A generic three-dimensional polygonal head model is aligned with a head-
on shot of the video sequence, and the corresponding pixels are texture mapped to the
surface of the face model.

96 The Tracking System

10.1.1 Head Model

The texture of the face region in the image of Figure 10.1a is texture mapped
onto a modified version of the Candide model [54] (Figure 10.1b) to obtain the
texture mapped three-dimensional model of Figure 10.1c. The most important
task of the three-dimensional model is to deform the tracked patches projec-
tively. If the model is slightly displaced, it is often better to use a smoother
model than a very detailed one, even if the latter is more correct [16]. One
example is if the head model is accurate, but displaced in the x-direction by a
distance as large as the width of the nose. Then the depth error in the nose
region will cover twice the area of what a model without a nose would give.
Therefore, the Candide model has been modified by flattening out the nose.
Furthermore, new triangles on the sides of the head have been added in order
to allow for texture updates when the head rotates.

10.1.2 Selecting Feature Points

After alignment has been performed, the system selects which feature points to
use. The idea is to be able to follow a rather dense set of feature points in the face
area of the head, but for computational reasons, all pixels in the image cannot
be used, and it is important to select only those that are easiest to track. The
part of the image in Figure 10.1a containing the face is cropped out, and then
lowpass filtered and subsampled once (Figure 10.2a) to avoid selecting features

(a) (b) (c) (d)

Figure 10.2: (a) The lowpass filtered incoming video. (b) The weighting (the cosine of
the angle between the surface normal and the camera direction). (c) The final rating.
(d) The first twelve of the 24 extracted feature points.

that are too vague to be reliably tracked. Denoting the resulting intensity
function I(x, y), points where the determinant of the Hessian

det(H) =

∣

∣

∣

∣

Ixx(x, y) Ixy(x, y)
Ixy(x, y) Iyy(x, y)

∣

∣

∣

∣

(10.1)

is large are of interest. These points are peaks, saddle points and pits in the
intensity surface and can be reliably tracked without aperture problems [9, 10].
For each point in the image, the determinant in Formula (10.1) is evaluated
and used as a rating of the point. To avoid selecting points on parts of the

10.2 Tracking 97

face that are perpendicular to the camera, the determinant is weighted with the
cosine of the angle between the surface normal and the camera direction. These
values can easily be obtained from the computer graphics hardware by render-
ing a gray-shade version of the three-dimensional model with lighting from the
camera direction (Figure 10.2b). The resulting rating of each pixel is shown in
the Figure 10.2c, where brighter pixels indicate a higher score. The 24 points
with the highest ratings are then selected with a minimum-distance constraint
between points. (24 points is the maximum number that the tracker can handle
at full frame rate.) In detail, a sorted linked list with the 200 highest-rating
pixels are created. The highest scoring pixel is chosen as a feature point, and
all elements in the list closer to this point than the minimal distance are re-
moved. This process is repeated 24 times. The fourth image in Figure 10.2
shows the first twelve points selected. Each feature point is then associated
with a three-dimensional model position on the surface of the head model. The
model position will later be used as the center of the template patch. The co-
ordinates of the model position can be obtained by intersecting rays from the
camera with the head model. Again, the computer graphics hardware can be
used, this time by reading out the value of the depth buffer in the corresponding
pixel location, to calculate the depth of the feature point.

10.1.3 Initializing the Kalman Filter

The model position of each feature point will not equal the point’s true three-
dimensional position. However, since the model position is obtained from a head
model, it should be a reasonable starting point for further refinement. Hence
the depths of the model positions are used as starting values for the α−values in
the SfM Kalman filter presented in Chapter 7. The three-dimensional position
estimated by the Kalman filter is here called the estimated position. The image
coordinates of the feature points (u0, v0) are used to represent the structure
according to Equation (7.4). For numerical stability, the coordinates are scaled
so that the width of the image equals 1.0 units.

10.2 Tracking

As shown in Figure 10.3 (repeated here for the convenience of the reader),
the tracking is carried out between the rendered frame and the video input.
Both images (or rather, the relevant parts of them) are lowpass filtered and
subsampled in order to track larger and more robust features. Since the model
positions of the feature points are fixed with respect to the three-dimensional
model, their two-dimensional coordinates in the rendered image (bottom left
image of Figure 10.3) can be calculated. A 7× 7 pixel patch around each model
position is cropped out. This patch will contain the projectively transformed
version of the original feature point. The patch is matched with patches from
a 11 × 11 pixel search window of the incoming video image (top left image of

98 The Tracking System

2D patch

tracking

variance

estimates

(from 3D model

and residuals)

EKF
structure from motion

rendered 3D surface model

pose

3D structure

focal length

3D point model

focal length

pose,

estimated position

point

as starting

is used

measurements
(2D trajectories)

video input

texture

update

Figure 10.3: Patches from the rendered image (lower left corner) are matched with
the incoming video. The two-dimensional feature point trajectories are fed through the
SfM extended Kalman filter that estimates the pose information needed to render the
next model view. For clarity, only four patches are shown.

Figure 10.3). The search window is centered around the estimated position from
the SfM algorithm. Normalized correlation is used; if a and b are the vectors
obtained by raster-scanning the patch in the rendered image and the video input
respectively, then the b that minimizes the angle between them is selected. This
is equivalent to maximizing

̺ = cos(θ) =
â · b̂

‖â‖‖b̂‖
(10.2)

where â = a−µa, b̂ = b−µb. Recall that µx represents the mean of x and that
‖ · ‖ represents the L2 norm. After Equation (10.2) has been used to calculate
̺ for each position in the search window, a Gaussian window is applied to ̺ to
favor positions close to the estimated position. An exhaustive search is carried
out in the search window and the candidate with the lowest error is selected.

10.2.1 Subpixel Refinement

Since the two images were subsampled before matching, the accuracy of the
tracking is only ±1 pixel. However, since an exhaustive search is performed
in the search window, the correlation is known in the adjacent positions. By
approximating derivatives with central differences, the correlation error surface
is approximated by a second degree Taylor polynomial

̺(∆x) ≈ ̺0 + cT ∆x + ∆xT H∆x. (10.3)

10.3 Estimation of the Covariance Rk 99

If the resulting matrix H is negative semidefinite, the (sub-pixel) location of the
maximum of the resulting paraboloid is calculated as

∆x = −H−1c, (10.4)

and the refined value can then be used as the feature location. If the error
surface is very irregular however, the maximum proposed by Equation (10.4)
can be outside the 2× 2 pixel area. In this case the Taylor polynomial is a poor
approximation of the error surface and the centroid of the 2 × 2 pixel area is
used instead.

10.3 Estimation of the Covariance Rk

As described in Appendix C, each measurement vector z̄k in a Kalman filter
is associated with a covariance matrix Rk. Traditionally, this covariance ma-
trix (as well as Qk, and P0) is assumed to be known a priori. If the values
of Rk varies from time step to time step, and if these variations can be esti-
mated, then filtering performance can be increased. This is exactly the case
in tracking; some points will be occluded, and their position measurements will
therefore have large errors — the corresponding elements in Rk will be big. This
variation in Rk can be estimated, e.g., by measuring the correlation coefficient
̺; a low ̺ indicates a high Rk element and vice versa.

In the case of template matching, there are basically two types of matching
errors. Either the correct match is found, offset only slightly because of small
changes in lighting, small errors in the projective transformation of the patch,
etc. This is called the small error case in this thesis. The other possibility is
that the match is completely wrong, for instance due to occlusion or to that
the normal of the feature point is almost perpendicular to the camera direction.
This is named the large error case. In one dimension, the displacement of the

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4
fs(x)
fl(x)

Figure 10.4: Solid: The probability density function of the matching displacement for
the small error case, fXs(x). Dotted: Ditto for the large error case, fXl

(x).

measured position to the real one can be distributed as in Figure 10.4. The solid

100 The Tracking System

line shows the probability density function (pdf) in the small error case, fXs
(x),

a Gaussian with a standard deviation of one pixel. The dotted line shows ditto
for the large error case, fXl

(x), a Gaussian with a standard deviation of ten
pixels. Since the error in the x− direction is often correlated with the one in
the y− direction, it is advantageous to model the noise for each point as a two-
dimensional Gaussian. Instead of just selecting a standard deviation such as in
the one-dimensional case, a two-dimensional covariance matrix Σ is estimated.
The following sections will treat how this is done.

The suitable matrix for the small error case, Σs, and that for the large er-
ror case, Σl, are discussed separately. Then a section will follow on how to fuse
these to a matrix Σ that is used to construct Rk, the covariance matrix of the
measurement vector.

10.3.1 Small Error Case

Jebara and Pentland [35] use the residuals of the correlation-based trackers to
estimate the covariance matrix Σs. In the initialization phase, the correlation
trackers are perturbed, and the corresponding square root of the sum squared
error (

√
SSD) surface is approximated with a polynomial equation

√
SSD = ∆XT A∆X. (10.5)

Since two points per patch are tracked (cf. Section 6.3), ∆X will be four-
dimensional, ∆X = (∆X1,∆Y1,∆X2,∆Y2). Jebara and Pentland point out
that, by making the covariance matrix of ∆X proportional to A−1, all points
∆X that contribute to a certain error

√
SSD will get the same probability. In

other words, the iso-residual ellipsoids will correspond to iso-probability ellip-
soids.

Presuming that ∆X ∈ N(0, ξA−1), the measured error residual
√

SSD can be
used to obtain an unbiased Maximum Likelihood estimation of ξ, ξ∗ = 1

4

√
SSD

(cf. Appendix D). Thus

Σs =
1

4

√
SSD A−1, (10.6)

which is consistent with the formula of Jebara and Pentland

Σs ∼
√

SSD A−1. (10.7)

In the proposed tracking system, only one point per patch is tracked, and a
similar formulation is possible for this case. The resulting two-dimensional
covariance matrix is

Σs =
1

2

√
SSD A−1, (10.8)

where the only difference is in the estimate of ξ, ξ∗ = 1
2 . A problem in the two-

dimensional case is that Equation (10.8) cannot account for in-plane rotation:
For instance, if the patch contains a feature that is elongated in the x−direction,

10.3 Estimation of the Covariance Rk 101

Equation (10.8) will model the error correctly in the beginning; Σs will be
uncertain in the x−direction. However, after a 90◦ in-plane rotation, the feature
is now elongated in the y−direction, while Equation (10.8) still predicts bigger
uncertainty in the x−direction. A better estimate of the pdf of the error can be
found using the error surface of the correlation matching, ̺(∆x), and its Taylor
expansion from Equation (10.3). Using

Σs ∼ (−H)−1, (10.9)

where H is the Hessian of Equation (10.3), a noise model is obtained that better
reflects the actual shape of the error. In Figure 10.5, an error surface is shown,
where brighter pixels represents better matches. Superimposed is the ellipse

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Figure 10.5: Background: The error surface ̺(x) of the correlation. Foreground:
The ellipse x

T (−H)x = C from the Taylor expansion of ̺(x) around its maximum
(Equation (10.3)).

corresponding to the quadratic form xT (−H)x = C. This ellipse represents
both constant error and constant probability when Equation (10.9) is used.
Loosely speaking, the estimated Σs should have the same shape as (−H)−1,
but not necessarily the same magnitude. More precisely, the ellipse formed by
xT Σ−1

s x = 1 should have the same orientation and relative thickness as the one
obtained by xT (−H)−1x = 1, but not necessarily cover the same area.

10.3.2 The Shape of Σs

If (−H)−1 is symmetric and positive definite (which it should if a proper maxi-
mum has been found), it can be diagonalized into (−H)−1 = RDRT [60], where
R is a rotation matrix and D is a diagonal matrix with positive elements. The
radii (a, b) of the ellipse xT (−H)x = 1 will then correspond to the square roots
of the elements in D; a =

√
d11, b =

√
d22. If the rotation angle and the thick-

ness of the ellipse xT Σ−1
s x = 1 should be the same as for xT (−H)x = 1, this

means that the rotation matrix R and the ratio of the radii a/b should remain

102 The Tracking System

the same. Hence, Σs can be written

Σs = R

(

ca 0
0 cb

)2

RT , (10.10)

where c is a suitable constant giving the desired magnitude of Σs.

10.3.3 The Magnitude of Σs

In the small error case, the assumption will be made that all points are of similar
quality, i.e., their deviation from the true positions will be similar. Thus it is
natural to give all points a pdf of equal uncertainty, or entropy. In his famous
1948 paper [56], Shannon defines entropy and shows that the entropy of a d−
dimensional gaussian random variable X with covariance matrix Σ equals

H(X) = ln
(

(2πe)
d
2 |Σ| 12

)

. (10.11)

For a fixed dimension d, the entropy thus depends only on the determinant |Σ|.

The measure H(X) has two intuitively pleasant properties. First, since a ro-
tation matrix has determinant one, it is rotationally invariant: det(RΣRT) =
det(R) det(Σ) det(RT) = det(Σ), see Figure 10.6. Second, fixing H(X) will

Figure 10.6: The two Gaussians above with covariance matrices Σ (left) and RΣRT

(right) have equal entropy since |RΣRT | = |R||Σ||RT | = |Σ|.

avoid a singular Σ which would otherwise lock the Kalman filter solution to a
subspace in an unnatural way (see Section C.3). The constant c from Equa-
tion (10.10) is selected so that the entropy is equal to that of a Gaussian with

Σref =

(

σ2 0
0 σ2

)

, with a standard deviation of σ = 4 pixels. The determinant

of Σs in Equation (10.10) is

|Σs| =

∣

∣

∣

∣

∣

R

(

ca 0
0 cb

)2

RT

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(

ca 0
0 cb

)∣

∣

∣

∣

2

= (cacb)2 = c4(ab)2. (10.12)

Setting this equal to |Σref | = σ4 gives

c =

(

σ4

(ab)2

)
1
4

. (10.13)

10.3 Estimation of the Covariance Rk 103

A check is made so that cb is larger than σmin = σ
4 ; if not it is set to σmin (a is

assumed to be larger than b). The standard deviation in any direction can thus
never be smaller than one pixel. This avoids the situation where the Kalman
filter is erroneously locked to a subspace of the solution space (see Section C.3).

In summary, the covariance matrix Σs is estimated as follows:

1. The matrix (−H)−1 is calculated and checked so that it is positive definite

2. Singular value decomposition is used to decompose (−H)−1 into RDRT

3. The radii a ≥ b are obtained from D and Equation (10.13) is used to
calculate c.

4. cb is set to min(cb, σ/4), ca is set to max(ca, 4σ)

5. Σs is set to RD′RT , where D′ = diag
[

(ca)2, (cb)2
]

.

The attentive reader might object that, compared to the above-mentioned method,
it is less computationally demanding to use the seemingly equivalent formula

Σs =
|Σref |

1
2

| − H−1| 12
(−H−1). (10.14)

In this formulation, however, the check of item 4 cannot be performed.

An example of estimation of Σs can be seen in Figure 10.7, where the radii

Figure 10.7: Resulting estimation of Σs. The radii of the ellipses x
T Σsx = 1 are

shown, where long radii correspond to large uncertainties.

ca and cb have been plotted. Just as expected, the uncertainty is larger along
elongated features such as the mouth and the side of the nose.

If (−H)−1 is singular or not positive definite, no attempt to extract aperture
information from it is made. Instead the uniform covariance matrix

Σs =

(

σ2 0
0 σ2

)

(10.15)

is used.

104 The Tracking System

10.3.4 Large Error Case

In the large error case, the assumption is that the true position is somewhere in
the search area region. A standard deviation of 10σ = 40 pixels is used, which
is roughly in the same order of magnitude as the 22 × 22 pixel search window.
Since the best match is assumed to be in the wrong position, the local Taylor
expansion is not valid and no attempt is made to shape the noise. Hence, the
covariance matrix

Σl =

(

100σ2 0
0 100σ2

)

(10.16)

is used for the large error case.

10.3.5 Calculating Σ

Given a point, the next problem is to select a proper covariance matrix given the
decision parameters; the correlation error, the visibility of the triangle and its
angle to the camera. There are two possibilities; either a hard decision is made,
selecting either Σs or Σl, or a soft decision is made, using a combination of Σs

and Σl. The hard decision is the simpler one, but has the drawback that a small
change in the decision parameters could make the covariance jump instantly
from Σs to Σl, generating a discontinuity in the tracked parameters. The softer
version does not have this problem, but requires the design of a reasonable
function for combining Σs and Σl. The following sections will go through both
the hard and the soft version. Before that, a model will be presented that is
valid for both types of decisions.

10.3.6 Confidence Value Model

The problem of deciding which Σ to use can be reformulated to estimating
a “confidence value”, i.e., a probability ps that the matching belongs to the
small error case. More specifically, ps is the probability of the match be-
longing to the small error case given the value of the decision parameters;
ps = p(small | ̺, θ, V), where ̺ is the correlation value, θ the viewing angle
of the point’s triangle and V ∈ {0, 1} determines visibility. Consequently, the
matching belongs to the large error case with probability (1−ps). The combined
pdf of the displacement error will be

fX(x) = psfXs
(x) + (1 − ps)fXl

(x). (10.17)

In the hard case, ps is trivially estimated as being either 0 or 1, whereas in the
soft case ps ∈ [0, 1]. In Figure 10.8 fX(x) is shown in the one-dimensional case
for ps = 0.5. Note that, even though both fXs

(x) and fXl
(x) are Gaussian, the

resulting fX(x) is not; the tails go to zero much slower than for a Gaussian.
However, it is still possible to calculate its variance. Since E [X], E [Xs], and

10.3 Estimation of the Covariance Rk 105

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Figure 10.8: The pdf of Equation (10.17) with equal probabilities of choosing fXs(x)
(with standard deviation σ = 1) and fXl

(x) (with standard deviation σ = 10).

E [Xl] are assumed to be zero, the variance is

σ2
X =

∫

x2fX(x) dx =

=

∫

x2ps fXs
(x) dx +

∫

x2(1 − ps)fXl
(x) dx =

=ps σ2
Xs

+ (1 − ps)σ2
Xl

.

(10.18)

A similar formula is valid in the two-dimensional case,

Σ = ps Σs + (1 − ps)Σl. (10.19)

10.3.7 Hard Decision

In the case of a hard decision, it is only a question of selecting between the
two possibilities ps = 0 and ps = 1. To simplify the problem, the value of
ps is estimated independently for the three decision parameters ̺, θ and V ;
p(small | ̺), p(small | θ) and p(small |V). The minimum of the three probabilities
is used;

ps = min(p(small | ̺), p(small | θ), p(small |V)). (10.20)

Starting with the correlation value, Bayes’ rule gives

p(small | ̺) =
f(̺ | small)p(small)

f̺(̺)

p(large | ̺) =
f(̺ | large)p(large)

f̺(̺)

(10.21)

The small error model should be selected if p(small | ̺) > p(large | ̺), which is
equivalent to

f(̺ | small)p(small) > f(̺ | large)p(large) (10.22)

106 The Tracking System

To be able to use the above formula, it is necessary to know p(small) and
p(large). However, these two probabilities vary a lot during tracking. For in-
stance, when the head is frontal, p(small) is almost one, whereas when the head
is rotated far from the initialization pose, p(large) might be the bigger one.
Assuming they are equally probable, the decision rule is simplified to

f(̺ | small) > f(̺ | large). (10.23)

To estimate f(̺ | small) and f(̺ | large), the following experiment was con-
ducted. The tracker was allowed to run, and the user’s head was rotated to
a critical pose where the tracked point deviated from its correct position. The
correlation value was measured for a number of frames, each measurement being
an example of f(̺ | large). Next, the head was moved until the feature point just
moved back to the correct position. The correlation value was then measured
continuously during a rotation from this critical pose to a frontal pose, in order
to get correlation values from all types of poses. These correlation values were
used as examples of f(̺ | small). The procedure was repeated for all points, and
f(̺ | large) and f(̺ | small) were estimated using normalized histograms. The
same number of measurements was used for each point. The result is shown
in Figure 10.9. The diagram shows that, using the rule in (10.23), the decision

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 10.9: Estimated f(̺ | small) (dotted) and f(̺ | large) (solid).

boundary should be put at around ̺ = 0.8. Thus

p(small | ̺) =

{

1, ̺ ≥ 0.8

0, ̺ < 0.8.
(10.24)

For the angle θ between the triangle normal and the viewing direction, a decision
boundary of cos(θ) = 0.2 was found:

p(small | θ) =

{

1, cos(θ) ≥ 0.2

0, cos(θ) < 0.2.
(10.25)

10.3 Estimation of the Covariance Rk 107

If the triangle with which the model position of the feature point is associated is
facing away from the camera, cos(θ) is smaller than zero and the above rule will
make sure that the large error case is selected. However, due to self occlusion,
the triangle might not be visible even if cos(θ) > 0. For this reason, a check is
performed to ensure that the triangle is visible. In the implementation this is
done by rendering the head model a second time, drawing every triangle with
a different color. For each triangle containing a feature point, the pixel of the
triangle centroid is read back. If the color that is read back differs from the
one used to draw the feature point triangle, the feature point must be occluded
(V = 0), else (V = 1). Hence,

p(small |V) = V. (10.26)

ps can now be calculated using Equation (10.20).

10.3.8 Soft Decision

As mentioned above, one drawback with the hard decision method is that small
changes in the decision parameters ̺, θ and V may cause large changes in the
estimated covariance Σ and therefore in the tracked sequence. It is possible that
the tracker can get into a state where a small movement changes Σ from Σl to
Σs for a certain feature point, and that this will change the estimated pose of
the head so that, in the next frame, Σ will move back to Σl, creating a jerky
oscillation of the estimated head pose.

To investigate whether this is the case, the tracking was set up with two covari-
ance estimation rules that the user could easily toggle between. The first was a
simpler version of the hard decision, with p1

s = p(small | ̺). The second was a
C0-continuous version of this,

p2
s =











0, ̺ < 0.75
̺−0.75

0.85−0.75 , 0.75 ≤ ̺ < 0.85

1, ̺ ≥ 0.85.

(10.27)

The two functions can be seen in Figure 10.10. While changing between p1
s and

p2
s during tracking, no discernable difference in the tracking was found. This led

to the conclusion that the discontinuity of p1
s is not devastating to the tracking,

and a hard decision can thus be used. The soft decision rule certainly has the
potential of performing better than the hard one, but involves more degrees of
freedom and is thus harder to design. Rather than inventing ad hoc functions
mapping (̺, θ, V) to ps that could even deteriorate performance, the simpler
hard decision rule is used.

In summary, for each feature point i, the covariance matrices Σi
s and Σi

l are
calculated, and a confidence value pi

s ∈ {0, 1} is found. A covariance matrix
Σi is then selected as either Σi

s (if pi
s = 1) or Σi

l (if pi
s = 0). The measure-

ment covariance matrix Rk of the Kalman filter is then set to the block matrix
Rk = diag(Σ1,Σ2, . . . ,ΣN).

108 The Tracking System

0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Figure 10.10: Dotted: The hard decision rule p1
s as a function of ̺. Solid: The C0

continuous decision rule p2
s.

10.4 Texture Update

Since the initialization procedure is performed on a head-on snapshot of the
head, all the feature points will be situated in the frontal face area. Thus, at
large out-of-plane rotations, few or no feature points will be visible in the image
and the system will inevitably lose track. Tracking points at the side of the
head would solve this problem. However, since the texture is acquired from the
first frame during the initialization procedure, parts of the head that are not
visible in a head-on shot will not get an accurate texture. Therefore the system
automatically extracts new texture when the head has rotated enough. More
specifically, the texture for the entire side of the face will be acquired from the
video when the scalar product between the camera direction and the triangle
normal is greater than a certain constant value. Figure 10.11 illustrates this;
the first image is the head-on shot used for initialization. The second image is

Figure 10.11: From left: head-on shot used for initialization, first tracked frame,
frame just before texture update, frame just after texture update. The small area in
last image shows where the system looks for new feature points.

the texture map acquired at the first frame. The third and the fourth image is
the model just before and after the acquisition of the new texture on the side.
The new feature points on the acquired texture are obtained the same way as

10.4 Texture Update 109

described in Section 10.1, with one difference. Since it is undesirable to select
points that are too close to the head boundary, or to the discontinuous “seam”
between the two textures, only a smaller area of the texture is searched for
feature points. The small area in the last image in Figure 10.11 shows where
the system looks for new feature points. The technique proposed in Chapter 9
is then used to incorporate the new points into the Kalman filter.

110 The Tracking System

Chapter 11

Reinitialization

This chapter investigates how to reinitialize a model-based head tracker after
tracking failure. The information gathered in the original initialization is used
to obtain a quick and reliable reinitialization. The color information of the
model’s texture map is used to obtain a skin color model that is per definition
adapted to the lighting, the characteristics of the camera and the specific skin
tone of the user. The search for the largest skin colored blob is then further
refined by template matching using a part of the face texture between the eyes.
From this refined position the tracker is restarted. A method for automatic
detection of tracking failure is also presented.

11.1 Background

With any tracking system, there is always a risk of tracking failures. In fact,
the word tracking itself indicates that the system is trying to follow something
rather than finding it. Of course, it would be possible for a system to start from
scratch in each image, regardless of the result from the previous image. Such
a system would not be able to “lose track”, and would thus be more robust in
that sense. However, it would also have to search the entire solution space each
time, instead of just investigating a small part of it around the previous solution.
That is slower than doing tracking, and therefore harder to justify in a real-time
system. Thus tracking failures will always have to be expected. In many ap-
plications, a tracking failure can be tolerated if it is detected and followed by a
swift and reliable reinitialization procedure. For instance, if the tracker output
is used for controlling a human computer interface, then a tracking failure may
not be severe: When the computer operator is turned away from the screen,
he/she does not need to control the computer. However, when the user returns
to the screen, the tracker should start working again. In a model-based coder
scenario it is less acceptable to have tracking failures, but even here it is more
important that the tracker works when the user is facing the camera than when
she/he is facing away. Thus, combining a tracker that sometimes fails with a

112 Reinitialization

good reinitialization procedure can result in a system that is almost as useful
as a system that provides continuous tracking.

Prior work in reinitialization includes that of Crowley and Berard [19]. They
use three visual processes for tracking and continuous reinitialization of a 2D-
based head tracker; a skin-color blob model, a correlation tracker and a blink
detector. Jebara and Pentland [35] detect tracking failure by normalizing the
face texture back to frontal position and measuring the “Distance From Face
Space” (DFFS). When the DFFS is larger than a threshold, a face detection
process restarts the tracker from scratch, disregarding information gathered so
far. The most similar approach to reinitialization is proposed by Matsumoto
and Zelinsky [46]. They use the correlation values from the tracking to detect
failure, and a coarse-to-fine template matching step of the entire face in order
to find a good restarting position. Their face tracking system is using stereo
camera input, in contrast to monocular camera input as used in this thesis.

The key point of this chapter is that robustness and speed can be gained by hav-
ing a special reinitialization procedure, different from the original initialization
procedure. The basic idea is that a lot of information that was gathered in the
initialization stage can be reused to help the reinitialization. For example, the
texture map of the face that was obtained during initialization can be used to
build an accurate skin color model as well as providing templates for template
matching.

The next section will define the term convergence zone, and discuss typical
failures that occur. The section that follows will go through the proposed reini-
tialization scheme; failure detection, skin color processing, template matching
and restarting. The chapter will be concluded by results and a discussion on
possible improvements.

11.2 Tracking Failure

11.2.1 Convergence Zone

The convergence zone of a tracking system for a certain image in the sequence
is here defined to be the set of all poses (translation and rotation) of the model
that will converge to the true pose of the head in that image, if the tracker is
allowed to run. The tracker works by starting inside the convergence zone in
the first frame, and as the pose changes in each frame (caused by the user’s
movements), the tracker will converge to the true pose. As long as the model
pose that is estimated in the previous frame is within the convergence zone of the
current frame, the tracking will work. It should be noted that, in this definition,

11.3 Reinitialization 113

the size of the convergence zone will be different for each pose. Moreover, it
will generally be smaller in the beginning of the sequence when the α− and β−
values have not had time to converge, compared to later when these values are
correctly estimated.

11.2.2 Typical Failures

There are three typical cases when a tracker fails. The first is if the user moves
too quickly from one frame to the next. Then the pose of the model will be
outside the convergence zone, and the tracking will fail. The second case is when
the user’s head is rotated far away from the original (frontal) position, such as in
Figure 12.4c. Many of the easily trackable points (around the eye and nose) are
then facing away from the camera, and errors in the three-dimensional modeling
are also becoming more visible. Both of these factors make the convergence zone
shrink substantially, and tracking can be lost even at slow pose velocities. The
third case is when an obstacle such as an arm completely occludes the face —
the convergence zone is then virtually zero. A scenario containing all three of
the typical cases is when the user turns the head quickly 180 degrees towards
someone standing behind the computer, shown in Figure 12.2d.

11.3 Reinitialization

11.3.1 Failure Detection

The tracking procedure described in Section 10.2 produces a correlation value,
̺, for each point. A ̺ close to 1 indicates an accurate match, whereas a low ̺
means that the measurement is insecure. If the tracking has failed, it is unlikely
that any point will produce a high ̺. A tracking-error is declared if the best
̺ is smaller than a threshold value for the entire duration of ten frames. The
resulting detector is not water proof, but since the ̺ measurements are a bi-
product of the tracking, it is virtually cost-free. It also works reasonably well
in practice.

11.3.2 Skin Color Processing

Once a tracking failure is declared, the reinitialization process starts with build-
ing a skin color model. This is a widely used method for finding faces and hands,
introduced by Crowley and Berard [19] and by Olivier, Pentland and Berard [50].

For a pixel with color x = (Y,U, V), let p(skin |x) be the probability that it
is a skin pixel, and similarly p(not skin |x) the probability that it is not. A
pixel will be labeled as a skin pixel if

p(skin |x) > p(not skin |x). (11.1)

114 Reinitialization

Using Bayes rule,

p(skin |x) =
f(x | skin)p(skin)

fx(x)

p(not skin |x) =
f(x |not skin)p(not skin)

fx(x)
,

(11.2)

the inequality in (11.1) becomes

f(x | skin)p(skin) > f(x |not skin)p(not skin). (11.3)

Since the lighting, camera and the skin tone of the person can be assumed to be
the same as when this texture was acquired, a simple Gaussian in the YUV color
space suffices to approximate the skin probability density function f(x | skin).
Statistics is gathered from points in the original texture (Figure 11.1a), using
the image shown in Figure 11.1b to mask all but the forehead and the cheeks.
In detail, the covariance matrix Σ and the mean vector µ of the gaussian pdf

f(x | skin) =
1

(2π)
3
2

√

|Σ|
exp(−1

2
(x − µ)T Σ−1(x − µ)) (11.4)

is estimated. The probability density function for non-skin pixels is assumed
to be uniform, i.e., all colors are assumed to be equally probable. The color
coefficients delivered by the image grabbing hardware are in headroom range,
i.e., Y ∈ [16, 235] and U, V ∈ [16, 240]. This means that

f(x |not skin) =
1

(234 − 16)(240 − 16)2
. (11.5)

Finally, if the head is assumed to occupy about 5% of the screen, p(skin) = 1
20

and p(not skin) = 19
20 . Equation (11.3) can thus be rewritten as

f(x | skin) >
p(not skin)

p(skin)
f(x |not skin) ≈ 2 · 10−6. (11.6)

The input image (Figure 11.1c) is subsampled and f(x | skin) is calculated and
thresholded for each pixel. A connected components processing step is per-
formed on the binary image, and the largest connected skin color blob is assumed
to be the face. This is illustrated in Figure 11.1d.

11.3.3 Template Matching Refinement

Although the color blob obtained in the previous section is a robust way to
locate the face, it is not accurate enough. For instance, it is not easy to know
where the face ends and the neck starts. Furthermore, the dark features of the
eyes sometimes divide the face in two blobs, one containing the forehead and
one containing the rest of the face. The connected component processing step
will then choose the lower part of the face as the largest connected blob, and

11.3 Reinitialization 115

(a) (b)
(c) (d)

Figure 11.1: (a) Original texture (b) mask (c) input image (d) color blob

(a) (b)

(c) (d)

Figure 11.2: (a) Between-eyes template, (b) correlation surface, (c) result, (d)
model position

this will result in a large error in the vertical direction. To refine this position,
a 13 × 13 template (Figure 11.2a) from the area between the eyes is cropped
out from a subsampled version of the original texture. The bounding box of the
color blob is used as a search window for the template. Exhaustive search using
normalized correlation is performed in the search window, and the location of
the maximum of the correlation (shown in Figure 11.2b) is used. Figure 11.2c
shows a result of the template matching. Since the texture between the eyes is
situated in the middle of the face, it is visible even for relatively large out-of-
plane rotations. Empirically, it also works for comparatively large changes in
scale.

11.3.4 Restarting the Tracking

The x− and y− image coordinates for the “between-eyes” patch obtained above
will not suffice to resolve the unknown six degrees of freedom that constitute
the head pose. However, if the model is placed within the convergence zone,
the tracker will resolve the remaining unknowns. Thus it is important that the
model is positioned in a pose that is as plausible as possible. Assuming that
the head is approximately as big on the screen as it was during the original
initialization, the model is simply translated in the x− and y−domain, using
the same z as in the original initialization. The rotation is zeroed so that the
face is head on. Figure 11.3 shows an example of this. The left-most image
shows the video input at the time of reinitialization. The tracker is restarted in
the position shown in the second image. After five iterations (about 0.2 s) the
tracker has converged to the correct pose.

116 Reinitialization

Figure 11.3: Tracker convergence at restart.

11.4 Conclusions and Future Work

This chapter has shown how a model-based tracker can be reinitialized after
tracking failure. Information from the original initialization is used to make the
process fast and robust. Due to this information, it is possible to use rather
simple techniques that would otherwise not work as well, such as template
matching and skin color blob extraction. However, improvements are possi-
ble in a number of areas. The failure detection method that is used is simple
and cost free but (1) sometimes creates false alarm if the head is rotated too
much and (2) sometimes fails to detect a tracking failure if the translation is
correct but the rotation is wrong. Type (2) errors can be avoided by adding a
DFFS type criterion as proposed by Jebara and Pentland [35], whereas type (1)
errors are harder to handle. In general, it would be good to detect failure with
several methods rather than relying on a single one. One possibility is to use
the skin color blob as an additional estimate of the head pose; if it differs signif-
icantly from the estimate of the Kalman filter, the tracker could be reinitialized.

As shown in Figure 11.3, the system can reinitialize even if the user is not
head-on. To be able to reinitialize during larger out of plane rotations however,
the system must be able to guess the rotation of the head before the tracker
is restarted. This can be done either by starting the tracker from a small set
of rotated poses or by creating a small number of templates by rotating the
three-dimensional model. The templates can then be correlated with the video
in the skin blob area and the best template will indicate the approximate pose
of the head.

Chapter 12

System Evaluation

In this chapter, the tracker is evaluated. First, the performance of the system
is described. Then, an evaluation on real data is presented. In particular, it
is investigated how the estimation of the covariance matrix Rk and the texture
update improves the performance of the tracker. This is followed by a section
that investigates the performance on a synthetic sequence, where the ground
truth is known. The chapter will be concluded by a section on how to turn the
tracking system into a model-based coder.

12.1 Performance

The tracking system performs in real time on a SGI O2 R12000 270 MHz work-
station. The feature point finding algorithm (executed once at the start of the
tracking process) takes about 100 ms, and the rest of the tracking runs at 25 Hz.
Rotations from left to right up to ±90◦ are possible. In the up to down range,
rotations of up to about ±30◦ can be tracked. For the in-plane rotation com-
ponent, the system effortlessly tracks a 360◦ rotation. Translation in the x−
and y−directions of about 7 pixels per frame are possible, which corresponds to
a movement of 80% of the width of the screen in one second for the images in
Figure 12.11.

12.2 Evaluation on Real Data

The tracker has been tested on several subjects, as seen in Figure 12.1. A typi-
cal tracking sequence can be seen in Figure 12.2. The system is initialized (a),
the head is tracked (b and c), the track is lost (d) and regained in (e) through
automatic reinitialization.

1Only the middle 228 × 174 sections of the 320 × 240 images are shown in Figure 12.1.

118 System Evaluation

Figure 12.1: The tracker has been evaluated on different subjects.

(a) (b) (c) (d) (e)

Figure 12.2: Typical tracking sequence. The tracking is initialized in (a), and contin-
ued in (b) and (c). The track is lost in (d) and in (e) the tracking is regained.

12.2.1 Depth Convergence

As shown in Figure 6.5, the tracked trajectories of the feature points are for-
warded to the Kalman filter, which uses this information to infer the depths of
the points. In Figure 12.3 the depths are shown before and after convergence.
Small circles indicate large depth. In the normal implementation of the tracker,
the starting values for the depths αi are the depths of the model positions ob-
tained from the three-dimensional head model. In this example however, the
same depth α has been given to all the points (left) in order to show that they
converge to something reasonable (right). Note that the points near the centers
of the eyes are the smallest, which is reasonable since they are the points furthest
away. Experimentally, the system does not suffer from the possible near-planar
shape of the face. Thus the conditions in terms of noise, flatness of the object,
prior and motion excitation seems to be so that the system is inside the area of
convergence depicted in Figure 8.6.

12.2.2 Improvements due to Estimation of Rk

The estimation of the covariance matrix Rk (presented in Section 10.3) improves
the robustness of the tracker. Figure 12.4 shows an example of a sequence where
some or many of the feature points are occluded. A fixed Rk will result in mis-
matched points (column a) and severe oscillations in pose (column b) and most
often to a tracking failure. In contrast, with the proposed estimation of Rk, the

12.2 Evaluation on Real Data 119

10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

90

100

110

Figure 12.3: Left: Initial depth estimates. Right: Converged depths estimates. Small
circles indicate large depth. Please note the small circles near the centers of the eyes.

tracking is almost completely unaffected by the occlusion (columns c and d).
The sequence shown in Figure 12.4 is representative for how the system works
under occlusion. Of course, the tracking can still fail if too many of the points
are occluded during too long a period of time, especially if the head is moving
behind the occludor.

Moreover, the use of θ and V in the estimation of Rk prevents invisible or
hardly visible points from contributing to the tracking. Without the use of θ
and V , points on the occlusion boundary and on the back side of the head will
generate erroneous measurements. In this way, the estimated pose can slide
away from the correct pose, and tracking fails. By using θ and V , this situation
is avoided.

The same effect is also apparent when the head is rotated to the limit of what
the tracker can handle, such as in Figure 12.6 c. In this case, about half of the
feature points are occluded, and their erroneous measurements will result in a
large pose error. This in turn will mean that the templates for the matching
in the next frame will be even poorer, making the pose to oscillate and finally
making the tracking fail. When Rk is estimated using θ and V , the degradation
is more graceful — instead of starting to oscillate, the pose will freeze, since all
measurements are finally deemed unreliable. If the head rotates further, there
will be a large error between the estimated and the true pose. However, if the
head rotates back the same way, tracking can often be resumed.

120 System Evaluation

(a) (b) (c) (d)

Figure 12.4: Occlusion robustness due to estimation of Rk. Left: fixed Rk, resulting
in mismatched points (a) and lost track (b). Right: Rk estimated with the proposed
method. Only points that are estimated to be small error cases are shown in (c). The
tracking is almost unaffected (d).

12.2.3 Improvements due to Texture Update

Using points on the side of the head extends the rotational range of the tracker.
Figure 12.5 shows the difference in tracking performance for a sequence with
large out-of-plane rotation (column a). In column b, the additional texture is
not used, and the large number of hidden feature points and the poor matching
of the visible ones make the tracker oscillate and ultimately lose track. Column
c shows the same sequence tracked with the additional texture being used. The
tracking is stable.

Even with the added texture, there is a limit to how far the head can be rotated
before losing track. Rotations up to 90◦ are possible. Figure 12.6 shows an
example sequence where the head is tracked during a rotational movement of
about 90◦, and back again.

12.2.4 Performance of Reinitialization

Figure 12.2 shows a sequence with reinitialization. The reinitialization works
when the head is rotated approximately ±20◦ from the frontal position, in
any translatory position. The automatic detection of tracking failure is not
waterproof. In order not to have the tracking interrupted by a reinitialization
when the tracking works fine, the threshold is moved so that the false alarm

12.2 Evaluation on Real Data 121

(a) (b) (c)

Figure 12.5: Improved rotational range due to texture update. For sequences with
large rotational motion such as (a), the tracker will normally oscillate strongly and
lose track (b). By updating the texture and tracking points on the side of the head, the
tracking is made stable (c).

(a) (b) (c) (d) (e)

Figure 12.6: Example of a sequence where a rotation of around 90◦ is correctly tracked
due to the texture update scheme.

rate is rather small. This means that the system will sometimes not discover a
real tracking failure. Still, the reinitialization procedure is useful since it most
often will detect a tracking failure. In the few cases where it fails to do so, the
user can trigger the reinitialization by pressing a button or even quickly moving
the head. A better solution to this problem is of course to improve the failure
detection unit, for instance through eigenspace analysis of the face such as in
[35]. During the evaluation of the tracker on different persons, it was found that
the reinitialization improves the system’s ease of use considerably, and would
be useful even if it were completely manually triggered.

122 System Evaluation

(a)

(b)

(c)

Figure 12.7: (a) Rendered image sequence that was used for tracker performance
evaluation. (b) The result of tracking the synthetic sequence. (c) Original image
sequence that was used to obtain the motion parameters used in (a).

12.3 Evaluation on Synthetic Data

To get an idea of the accuracy of the tracking, the following experiment has been
conducted: First the tracker is run on a live image sequence (Figure 12.7 c) to
provide ground truth motion parameters (the “first pass”). Then a synthetic
sequence is rendered using these motion parameters (Figure 12.7 a). The tracker
is now run a second time on the synthetic sequence (“second pass”, Figure 12.7
b), and the estimated motion parameters are compared to the ground truth
data. It should be noted that such an experiment does not measure how well
the tracker can follow the motion in the original, live image sequence. The
reason for this is that it is not possible to rule out that the original sequence
is moving in a way that the tracker in the first pass does not follow, and that
this complex motion is “filtered out” from the ground truth data. Tracking
the synthetic sequence would then be an easier task than tracking the original
live sequence. Still, the experiment gives an idea of how well the tracker can
behave on a naturally moving head. The first two rows of Figure 12.8 show the
rotation parameters (one graph for each of the four quaternions) and the last
row shows the translation parameters. In each chart the ground truth is marked
with a dashed curve and the tracked data is marked with a solid curve. The
most striking systematic error is that there is a delay between the ground truth
and the estimates from zero to about ten frames (0.4 s). Also, at around frame
150, the error between the estimated parameters and the ground truth widens
temporarily, as best seen in the Y translation and in quaternion 1, 2 and 4.
Around frame 160 however, the estimates have recovered.

12.4 Coding

As reviewed in the first part of this thesis, Principal Component Analysis (PCA),
or eigenspace analysis, has proved to be a powerful tool for analysis and repre-
sentation of face- as well as lip images [59, 45, 72, 48, 14].

12.4 Coding 123

0 50 100 150 200 250 300
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Frame number

q1

Rotation (quaternion 1)

0 50 100 150 200 250 300
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Frame number

q2

Rotation (quaternion 2)

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Frame number

q3

Rotation (quaternion 3)

0 50 100 150 200 250 300
−0.2

−0.15

−0.1

−0.05

0

0.05

Frame number

q4

Rotation (quaternion 4)

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame number

T
x

X Translation

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

Frame number

T
y

Y Translation

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frame number

T
z

Z translation

Figure 12.8: Example of tracking of a synthesized sequence where the motion is known.
In each graph, the dashed curve represents the ground truth motion, and the solid curve
represents the motion estimated from the tracker.

124 System Evaluation

In the implementation of the head tracking system, a “zeroth-order model-
based coder” is included: The face in the incoming video is reconstructed using
the face model, head pose information, the texture of the first image plus the
real-time texture around the mouth region. The idea is to show a low bit rate,
model-based coder operating in real time (12 Hz).

Using the three-dimensional head pose information from the tracker, it is pos-
sible to warp back the face to a frontal position. Figure 12.9 shows an example
of this: The original image (a) is tracked (b), and it’s texture is then warped

a b c
d

Figure 12.9: The original image (a) is tracked (b), and the pose information is used
to warp the image to a head-on shot (c). From this image, a 36× 28 pixel area around
the mouth is cut out (d).

back to a frontal pose (c). From this pose-normalized image it is reasonable to
do projection onto an eigenspace.

A 36 × 28 pixel area around the mouth is cut out from the warped-back in-
coming video (Figure 12.9d). Since the human vision system is more sensitive
to differences in luminance than in chrominance, the mouth image is converted
from RGB to YUV; the chrominance components U and V are subsampled by
a factor of two, thus diminishing their impact on the eigenspace analysis. The
mouth image is then encoded using an eigenspace constructed from mouth im-
ages obtained the same way. The ensemble mean (first image in Figure 12.10)
is subtracted from the image and the residual is projected onto the eigenvectors

Figure 12.10: The mean image (extreme left) followed by the first six eigenimages.

(the first six are shown next to the mean image in Figure 12.10). Each coeffi-
cient is then quantized by dividing it by its standard deviation (the square-root
of the corresponding eigenvalue) and encoded using a Lloyd-Max quantizer for
a Gaussian source. The number of bits used to quantize a coefficient increase
with the size of the corresponding eigenvalue. Twelve coefficients are used, and
a total of 50 bits are used in the quantization.

12.4 Coding 125

The eigenspace is trained on images from the same person, but from a dif-
ferent sequence. The eigenvectors and eigenvalues must thus be transmitted to
the decoder in order for it to be able to reconstruct the images. By quantizing
the eigenvectors to 8 bits and compressing them losslessly (gzip), this data can
be sent at around 17000 bytes. The first texture must also be sent (e.g. using
JPEG) adding another 7000 bytes to the startup cost of a transmission. Each
additional frame requires a mere 98 bits of information; 50 bits for the eigenco-
efficients and 48 bits of motion information (each degree of freedom quantized
to 8 bits). A five-minute conversation at 12 Hz would thus result in a data rate
of about 1.8 kbit/s (1.1 kbit/s if startup costs are ignored). Figure 12.11 shows
examples of the mouth-chip coded this way. Figure 12.12 shows two frames

Figure 12.11: Top row: original images. Bottom row: coded with 50 bits per mouth.

from a longer sequence that has been tracked and coded using the model-based

Figure 12.12: Two frames from a sequence with coded mouth regions. Left column:
original images. Right column: tracked and coded result.

coder.

126 System Evaluation

Chapter 13

Conclusions

This thesis has concentrated on two topics in model-based coding; facial texture
compression (Part 1) and head tracking (Part 2).

The first part treats the efficient coding of face images, or face textures. Chap-
ter 2 argues that an efficient parameterization of the face space (the set of all
face images) should be convex, and that this is not the case for eye matching nor-
malization followed by PCA/KLT. By introducing a geometrical normalization
step, the parameterization of the face space becomes convex and the measured
and perceived image quality rises.

Chapter 3 introduces a block-based algorithm that substantially lowers com-
plexity and at the same time increases image quality, at the expense of com-
pression efficiency. Still, comparisons with JPEG show an increase in psnr of
more than 8 dB for the same bit rate.

In Chapter 4 it is investigated how much can be gained by distributing the
bits unevenly over the face. It is shown that psnr on the average rises 0.4 dB,
and the perceived quality even more, since bits are concentrated on visually
important regions such as the nose and the mouth.

In Chapter 5 the problem of placing of the feature points is formulated as an
optimization problem. By starting with a set of reasonable feature points, it
is possible to make improvements by optimization of the target function using
simple coordinate search. The work of Cootes et al. on active appearance models
involves a PCA based parameterization of the feature points and a better search
method which makes it more powerful1: Whereas the optimization procedure
in Chapter 5 can only refine the feature points from a good starting position,
the algorithm by Cootes et al. converges if started with the mean shape in a

1The work in Chapter 5 was published in [64] shortly after the work of Cootes et al. [17]
but was conducted independently. The work in Chapter 2 and Chapter 3 was published in
[63] prior to the work of Cootes et al.

128 Conclusions

reasonable position.

In the second part, it is shown that it is possible to build a stable head tracker
by tracking a large number of automatically selected feature points, constrained
by dynamically estimated structure. Naturally, the algorithm used for estimat-
ing the structure is a vital component of the system. Therefore the method
of choice, the Kalman filter approach of Azarbayejani and Pentland, needs to
be examined carefully. In Chapter 7 it is presented and compared to standard
methods based on multilinear constraints. In Chapter 8, the behavior of the
algorithm is studied for the degenerate case of planar objects. The method
is found to converge, albeit not as reliably as in the case of a general three-
dimensional object. Experiments are also conducted with a three-view filter,
that at least theoretically should be more stable than the original Azarbayejani-
Pentland formulation. However, the experiments do not indicate any large gains
in performance.

To be able to add points that are not visible in the original image, Chapter 9
presents an extension of the Azarbayejani-Pentland algorithm. By having two
reference frames — one for the old points and one for the new — it is possible
to avoid biases due to erroneous depth estimates. It should be noted that it is
this extension that allows the tracker to benefit from texture updates. Points
located on the updated texture areas can then be followed and incorporated in
the pose estimation.

Chapter 10 describes the implementation of the system. A large section treats
the estimation of the measurement covariance. Different methods for the co-
variance estimation were tried during the construction of the system. It is
surprisingly easy to invent ad hoc solutions that may not increase system per-
formance at all, or even decrease it. It seems to be especially dangerous to
assign a covariance that is too small, with a divergence of the SfM solution as
a result. A good rule of thumb is to let the standard deviation be larger than
one pixel in all directions.

Chapter 11 shows that it can be advantageous to have a reinitialization pro-
cedure that is different from the original initialization procedure. By using
information gathered in the original initialization procedure, the reinitialization
procedure can be made very simple and quite reliable. Possible improvements
could be to add more visual processes to make the detection of tracking fail-
ure more robust; the DFFS measure from [35] is one candidate, the distance
between the estimated pose and the largest skin colored blob is another. More-
over, to allow reinitialization from larger out-of-plane rotations, a small number
of templates could be produced by rotating the three-dimensional model. The
template with the best correlation would then decide the starting pose of the
head model before reinitialization is started.

In Chapter 12, the system is evaluated both on real and on synthetic data.

129

The evaluation confirms the hypothesis that a stable tracker can be constructed
this way. The system evaluation also shows how estimation of the measurement
noise covariance Rk can improve the robustness of the tracker. Furthermore, it
is shown how the extension of the SfM algorithm in Chapter 9 in combination
with texture updating can improve the range of the tracker.

The last section of Chapter 12 treats a small model-based coder that builds
mainly on the head tracking system of Part 2, but also touches on the PCA/KLT
based algorithms treated in Part 1. The result is a simple version of a model-
based coder that can transmit the image of a talking face at rates down to
1 kbit/s, and which works in real-time.

¨

130 Conclusions

Appendix A

KLT, PCA and SVD

This appendix will explain the details of the different mathematical and statis-
tical tools that are used in the first part of this thesis. Mainly this appendix
will be about the Karhunen-Loève transform (klt), but will also briefly cover
Principal Component Analysis (pca) and Singular Value Decomposition (svd),
since these techniques are closely related to the klt.

A.1 The Karhunen-Loève Transform

This section essentially follows the presentation by Fukunaga [25], but is in-
cluded here for the convenience of the reader. The notation is somewhat changed
to conform to the one used in this work. Hence a random variable will be writ-
ten in boldface letters (e.g., X), and a vector (column matrix) will be written
with a bar (e.g., x̄). Matrices will be written with capital or Greek letters (e.g.,
A,Γ). For example, X̄ is a vector valued random variable and X is a matrix.
The inner product between two vectors ā and b̄ is written āT b̄ or

〈

ā | b̄
〉

.

We may regard an image X[i, j] supported on [nx × ny] pixels as an n = nxny

dimensional vector x̄. This vector can in turn be thought of as the outcome of
an n-dimensional random variable X̄. X̄ can be represented losslessly (without
error) by a summation of n linearly independent vectors, such as

X̄ =

n
∑

k=1

Ykϕ̄k (A.1)

or, in vector notation, X̄ = ΦȲ where Φ = [ϕ̄1 . . . ϕ̄n] and Ȳ = [Y1 . . .Yn]
T

.
Φ is a deterministic matrix which can be assumed to be orthogonal (i.e., ΦT =
Φ−1). It is thus possible to calculate the components of Y as Yk = ϕ̄T

k X̄, which
means that the random vector Ȳ is just an orthonormal transformation of X̄.

There are several reasons for transforming an image before coding it. Two

132 KLT, PCA and SVD

of the most important effects to achieve are energy compaction and decorrela-
tion of pixels. This section will show that both of these are characteristics of
the Karhunen-Loève transform.

Instead of sending the individual pixel intensity values over the channel, a trans-
form image coder works by transforming the image and sending the transform
coefficients over the channel. Energy compaction means that, after the trans-
form, the energy of the image will be concentrated to a small number of co-
efficients. Thus it will be possible to truncate the coefficient stream and send
only M (< n) coefficients Yk and still be able to approximate the image X̄

well. The coefficients that are not sent can be replaced by preselected constants
bk, Ŷ = [Y1 . . .YM bM+1 . . . bn]. (Here the Yks are renumbered so that the
expected energy is concentrated to the first M coefficients.) X̄ can thus be

approximated by X̂ = ΦŶ. The error in the representation can be measured by
the mean-square error (mse) as follows,

mse =
1

n
E{‖X̄ − X̂‖2} =

1

n
E{‖Ȳ − Ŷ‖2} =

=
1

n

n
∑

k=M+1

E{|Yk − bk|2}.
(A.2)

Each choice of Φ and constant terms bk yields a value of mse. To find the
constant terms that minimize mse for a given Φ, the differential of Equation A.2
with respect to bk is set to zero and solved for bk, which results in bk = E{Yk}.
In other words, the Yks that are not transmitted should be replaced by their
expected values. The mean-square error can be written as

mse =
1

n

n
∑

k=M+1

E
[

(Yk − E{Yk})2
]

=
1

n

n
∑

k=M+1

ϕ̄T
k E

[

(X̄ − E{X̄})(X̄ − E{X̄})T
]

ϕ̄k

=
1

n

n
∑

k=M+1

ϕ̄T
k CX̄ϕ̄k,

(A.3)

where CX̄ is, by definition, the covariance matrix of X̄.

Theorem 2 The ϕ̄ks that minimizes the mean-square error mse in Equa-
tion A.3 are the eigenvectors of CX̄, that is, the ones which satisfy

CX̄ϕ̄k = λkϕ̄k. (A.4)

The mean-square error will be equal to

mseopt =
1

n

n
∑

k=M+1

λk. (A.5)

A.2 Principal Component Analysis 133

The proof is omitted here, but can be found in [25]. Two things should be
noted about the Karhunen-Loève transform. Firstly, the M eigenvectors of CX̄

that constitute the basis functions, minimize the mean-square error mse over all
choices of M orthogonal basis vectors. Therefore, as promised in the beginning
of the section, the Karhunen-Loève transform compacts the energy better than
(or as well as) any other orthogonal transform. Secondly, the coefficients Yk

are mutually uncorrelated, since their covariance matrix is diagonal:

CȲ = ΦT CX̄Φ =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











(A.6)

A.2 Principal Component Analysis

Following Jolliffe [37], the first step of principal component analysis (pca) of
a random vector X̄ is to find a linear function ρ̄T

1 X̄ of X̄ which has maximum
variance. The second step is to find a linear function ρ̄T

2 X̄ uncorrelated with
ρ̄T
1 X̄ which has maximum variance, and so on, so that at the kth stage a linear

function ρ̄T
k X̄ is found which has maximum variance subject to being uncor-

related with ρ̄T
1 X̄, ρ̄T

2 X̄, . . . , ρ̄T
k−1X̄. The kth variable, ρ̄T

k X̄ is called the kth
principal component, or pc for short. As shown by Jolliffe [37], the vector ρ̄k

associated with the kth pc is the kth eigenvector of the covariance matrix CX̄

of X̄. This means that the vectors ρ̄k obtained in the pca are the same as the
basis vectors ϕ̄k of the Karhunen-Loève transform. This thesis will refer to the
Karhunen-Loève transform as the procedure of projecting a vector X̄ onto its
klt basis vectors ϕ̄k, whereas the calculation of the vectors ϕ̄k will be called
pca.

A.3 Calculation of Karhunen-Loève Basis Vec-

tors, PCA

As seen in the preceding section, the Karhunen-Loève basis vectors ϕ̄k are cal-
culated from the covariance matrix CX̄ of the random vector X̄. One way to
estimate the covariance matrix is to assume some statistical model and then
derive the covariance matrix analytically. In most cases, however, it is not easy
to find a model that applies to the problem in any reasonable way. It is then nei-
ther possible to derive the covariance matrix nor the basis vectors analytically.
However, given sufficient amounts of training data, it is possible to estimate the
covariance matrix.

Let X̄ represent a random vector that generates an image with n pixels, accord-
ing to X̄ = [X1X2 . . .Xn]

T
. Assume there are N outcomes {x̄1, x̄2, . . . , x̄N} of

this random vector that constitute a training set, denoted {x̄k}N
1 . Each element

134 KLT, PCA and SVD

x̄k in this training set is a vector x̄k =
[

xk
1xk

2 . . . xk
n

]T
. It is then possible to

estimate the covariance between two pixels i and j by the measure

ĉij =
1

N − 1

[

N
∑

k=1

xk
i xk

j − 1

N

(

N
∑

k=1

xk
i

) (

N
∑

k=1

xk
j

)]

. (A.7)

The covariance matrix can thus be estimated using

CX̄ ≈ ĈX̄ = (ĉij) . (A.8)

If the random vector is zero-mean, the calculations can be simplified. (If not, a
new random vector of zero mean can be constructed through Ȳ = X̄ − E{X̄},
where E{X̄} is approximated by 1

N

∑N
k=1 x̄k.) The covariance matrix can then

be formed as

ĈX̄ =
1

N − 1











∑N
k=1 xk

1xk
1

∑N
k=1 xk

1xk
2 . . .

∑N
k=1 xk

1xk
n

∑N
k=1 xk

2xk
1

∑N
k=1 xk

2xk
2 . . .

∑N
k=1 xk

1xk
n

...
...

. . .
...

∑N
k=1 xk

nxk
1

∑N
k=1 xk

nxk
2 . . .

∑N
k=1 xk

nxk
n











(A.9)

or, in vector notation:

ĈX̄ =
1

N − 1
AAT , (A.10)

where A is a matrix with the training set images as columns,

A =





| | |
x̄1 x̄2 · · · x̄N

| | |



 . (A.11)

Note that ĈX̄ has the same eigenvectors as AAT . Moreover, if lk is an eigenvalue
of AAT , λk = 1

N−1 lk will be an eigenvalue to ĈX̄. It is thus possible to calcu-
late the transform basis vectors ϕ̂k and the corresponding eigenvalues λk from
the matrix AAT . The hat over ϕ̂k is there to remind us that the basis vectors
obtained are only approximations of the true ϕ̄k, since they are calculated from
ĈX̄ and not from CX̄.

Note also that ĈX̄ (and thus also AAT) is an n × n matrix which makes it
computationally expensive to calculate the eigenvectors. However, if N , the
number of images in the training set, is smaller than n, it is computationally
advantageous instead to consider the eigenvectors ξ̄k of AT A:

AT Aξ̄k = lk ξ̄k (A.12)

The above equation is multiplied by A,

(AAT)(Aξ̄k) = lk(Aξ̄k) (A.13)

A.4 Singular Value Decomposition 135

and it is clear that (Aϕ̃k) is an eigenvector to AAT (and hence also to ĈX̄).
Thus

ϕ̂k = Aξ̄k, (A.14)

is the kth principal component (or Karhunen-Loève basis vector) and

λk =
1

N − 1
lk (A.15)

is its corresponding eigenvalue. In other words, the eigenvectors ϕ̂k can be
computed from both AAT and AT A, so it is always possible to choose the one
that is smallest. Moreover, by rewriting equation A.14,

ϕ̂k =
[

x̄1x̄2 . . . x̄n
]











ξk1

ξk2

...
ξkN











(A.16)

it becomes apparent that the basis vectors ϕ̂k are simply linear combinations of
the vectors in the training set. Note also that the (i, j)th element of the matrix
AT A is the inner product between the ith and the jth image of the training set,

(AT A)ij =
〈

x̄i | x̄j
〉

(A.17)

A.4 Singular Value Decomposition

In Section A.1, the Karhunen-Loève Transform was shown to find, given knowl-
edge of the statistics, the optimal basis vectors with which to describe the data.
The basis vectors obtained are optimal in the sense that they minimize the
mean-square error. The Singular Value Decomposition, on the other hand, is
not founded on statistics but is a deterministic way of factorizing a given matrix.
However, as will be seen in this section, the two approaches can be used to give
exactly the same result.

Before going into details on the relations between the svd and the klt, it is
important to point out that the svd, due to the existence of a robust numerical
implementation, is used as a tool in numerical analysis to solve a large range of
problems such as determining the rank of a matrix, least-squares fit, etc. Thus
the possibility of using the svd to calculate the klt basis vectors is far from
the only application.

Theorem 3 Any n × N -matrix A can be factorized

A = UΣV (A.18)

(Singular Value Decomposition) where U and V are orthogonal matrices of
sizes n × n and N × N respectively, and Σ is an n × N -matrix of the form

Σ =

[

Sr 0
0 0

]

(A.19)

136 KLT, PCA and SVD

where Sr = diag(σ1, σ2, . . . , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The scalars
σ1, σ2, . . . , σr are uniquely determined by A and are called the singular values

of the matrix. The number r is the rank of the matrix.

The proof is omitted here, but can be found in [62]. It should be noted that if
all N columns of A are linearly independent, the first N columns of U constitute
an orthonormal base spanning the same subspace as the columns of A. Thus, by
constructing a matrix A where each column is an image vector from the training
set according to

A =
[

x̄1x̄2 . . . x̄N
]

, (A.20)

it would be possible to obtain a set of basis vectors ψk by performing svd on
the matrix

A = UΣV (A.21)

and letting the basis vectors be the N first columns of U ,

ψ1 = U1, ψ2 = U2, . . . , ψN = UN . (A.22)

As will be shown below, the basis vectors ψk achieved this way will be exactly
the same as the Karhunen-Loève basis vectors ϕ̂k obtained in the last subsection.

Theorem 4 The m first columns U1, U2, . . . , Um of the matrix U obtained by
the singular value decomposition A = UΣV of A are equal to the eigenvectors
ϕ̂k of the matrix AAT .

Proof 4 From A = UΣV , follows

AAT = UΣV (UΣV)T

= UΣV V T ΣT UT

= UΣ2UT ,

(A.23)

since V is unitary and Σ is diagonal. Multiplying equation A.23 from the right
by U gives

AAT U = UΣ2UT U

= UΣ2.
(A.24)

This gives
AAT U1 = U1σ

2
1

AAT U2 = U2σ
2
2

...

AAT UN = UNσ2
N ,

(A.25)

and thus the N first columns of U are eigenvectors to AAT . ¤

As shown above, the svd can be used for finding the Karhunen-Loève Transform
basis vectors ϕ̂k. This should not be confused with the technique proposed by
Andrews and Patterson [6], where an image is compressed by performing svd

on a single image. In this case, the basis vectors will be different for each image,
and will have to be transmitted over the channel.

Appendix B

Optical Flow

Consider a point P that is depicted by a moving pin-hole camera. Between two
consecutive frames, the camera has rotated (Ωx,Ωy,Ωz) around and translated
(Tx, Ty, Tz) along its three coordinate axes. This is equivalent to keeping the
camera still and moving the point, which is shown in Figure B.1, where the point
moves from P1 = (X1, Y1, Z1) to P2 = (X2, Y2, Z2). The images in Figure B.1 are

Figure B.1: The point P moves from P1 to P2 in the camera coordinate sytem due to
rotational (Ωx, Ωy, Ωz) and translational (Tx, Ty, Tz) motion of the camera.

denoted I(x, y, t1) and I(x, y, t2) (or I1 and I2 for short), and the coordinates of
the points in the image plane are represented by p1 = (x1, y1), and p2 = (x2, y2).
The displacement vector (α, β) (denoted d in Figure B.1) of the point (x1, y1)
can then be defined as

α = x2 − x1

β = y2 − y1.
(B.1)

The displacement vector (α, β) thus tells where to find a corresponding point
from image I1 in image I2. If the displacement is defined for each pixel position

138 Optical Flow

(x, y) in image I1, the result is a displacement field, (α(x, y), β(x, y)), where
both α and β depends on x and y. A pixel (x1, y1) in image I1 can then be
found in

(

x1 + α(x1, y1), y1 + β(x1, y1)
)

in image I2.

Closely related to the displacement field is the velocity field (u, v), which is
defined as the velocity of a pixel in the image plane. Thus

u =
dx

dt

v =
dy

dt
,

(B.2)

where (dx, dy) is the displacement vector generated by camera motion during
dt. In the same manner as the displacement field, u and v are both functions
of x and y; u = u(x, y), v = v(x, y). If the time ∆t = t2 − t1 between the two
frames I1 and I2 is known, the velocities u and v can be approximated using

u ≈ x2 − x1

∆t
=

α

∆t

v ≈ y2 − y1

∆t
=

β

∆t
.

(B.3)

Choosing the time scale such that ∆t = 1 yields (u, v) ≈ (α, β). This blurs
the border between the velocity field and the displacement field. Following the
notation used by Adiv [2], this thesis will use the term optical flow field when
referring to both the velocity field and the displacement field. The notation
(u, v) will be used for both types of optical flow fields.

If the object is fixed and only the camera moves, (or equivalently, if the camera
is fixed but the object moves rigidly), the motion can be described by a rigid
body transformation,

P2 = RP1 + T, (B.4)

where R is a 3 × 3 rotation matrix and T = (Tx, Ty, Tz) is a translation vector.
Furthermore, the projection from a three dimensional point to the image can
be calculated using

x = f
X

Z

y = f
Y

Z
,

(B.5)

where f is the distance from the image plane to the center of projection as shown
in Figure B.1. By assuming that f = 1, that the rotation between frames is
small, and that Tz/Z ≪ 1, Adiv [2] showed that the displacement field can be
approximated by

u(x, y) ≈ −Ωxxy + Ωy(1 + x2) − Ωzy + (Tx − Tzx)/Z

v(x, y) ≈ −Ωx(1 + y2) + Ωyxy + Ωzx + (Ty − Tzy)/Z,
(B.6)

B.1 The Optical Flow Constraint 139

where Ωx, Ωy and Ωz are the differential Euler angles around the x-, y- and
z-axis respectively, as shown in Figure B.1. Equation B.6 is also valid for the
velocity field. Setting ∆U = (Ωx,Ωy,Ωz, Tx, Ty, Tz), Equation (B.6) can be
written in matrix notation

[

u
v

]

=

[

cu

cv

]

∆U, (B.7)

or
[

u
v

]

= C∆U, (B.8)

where

C =

[

cu

cv

]

=

[

−(1 + y2) xy x 0 1/Z −y/Z
−xy (1 + x2) −y 1/Z 0 −x/Z

]

. (B.9)

B.1 The Optical Flow Constraint

To estimate the optical flow, a model is needed that explains how the optical
flow relates to the image intensity. A common approach is to assume that the
projection of an object point onto a pixel preserves its brightness from one frame
to another. This is not generally true, since many materials reflect different
amounts of light in different angles, but it is a reasonable approximation. The
assumption can be formulated

I(x + u, y + v, t + 1) = I(x, y, t). (B.10)

Taylor expanding the left-hand side of Equation (B.10) around (x, y, t) and
removing higher order terms results in

I(x, y, t) + Ixu + Iyv + It = I(x, y, t)

Ixu + Iyv + It = 0.
(B.11)

The above equation is called the optical flow constraint equation, and is valid
for small motions between the frames. The notation can be further simplified
to

[

Ix Iy

]

[

u
v

]

= −It (B.12)

∇I

[

u
v

]

= −It. (B.13)

140 Optical Flow

Appendix C

Extended Kalman Filtering

C.1 Kalman Filtering

This section will treat Kalman filtering [38] and its non-linear extension. Fol-
lowing Gelb et al. [26], consider a discrete, dynamic system

x̄k = Φk−1x̄k−1 + w̄k−1, (C.1)

where x̄k, the state vector, is a vector valued random variable that we are inter-
ested in estimating. Φk−1 is a matrix describing how the state vector changes
from state x̄k−1 to x̄k, and w̄k is a zero mean, white gaussian sequence with
covariance matrix Qk.

The model further assumes that the state vector x̄k cannot be measured di-
rectly, instead linear combinations z̄k of the state are measured according to

z̄k = Hkx̄k + v̄k. (C.2)

Here z̄k is a vector of measurements at time k, and v̄k is a zero mean gaussian
sequence with covariance matrix Rk. Note that the matrix Hk that can be of
less than full rank or even rectangular. This means that the dimensionality of
z̄ can be less than that of x̄.

The state estimate is updated using

x̂+
k = x̂−

k + Kk(z̄k − Hkx̂
−
k), (C.3)

where the x̂−
k denotes the prediction of the state before the measurement z̄k,

and x̂+
k is the estimate after the measurement.

The estimated from the previous time step, x̂+
k−1, can be improved before the

measurement using the deterministic part of Equation (C.1):

x̂−
k = Φk−1x̂

+
k−1. (C.4)

142 Extended Kalman Filtering

C.1.1 Calculating Kk

The equations C.3 and C.4 can now be used interchangeably to obtain an esti-
mate of the state x̄k. In order to do so, the matrix Kk must be calculated. The
derivation of Kk below follows Gelb et al. [26].

Let P+
k denote the covariance matrix of the error of x̂+

k ,

P+
k = E

[

(x̂+
k − x̄k)(x̂+

k − x̄k)T
]

. (C.5)

Simplifying yields

P+
k = (I − KkHk)P−

k (I − KkHk)T + KkRkKT
k , (C.6)

where Rk = E
[

v̄kv̄
T
k

]

, i.e., the covariance matrix of v̄k. Differentiating P+
k

with respect to Kk and setting the result to zero yields

−2(I − KkHk)P−
k HT

k + 2KkRk = 0. (C.7)

Solving for Kk, we get

Kk = P−
k HT

k

[

HkP−
k HT

k + Rk

]−1
(C.8)

which is referred to as the Kalman gain matrix.

An update equation for P−
k is also needed. Using the definition P−

k = E
[

(x̂−
k − x̄)(x̂−

k − x̄)T
]

and Equation (C.4), yields, after some manipulations,

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Qk−1. (C.9)

C.1.2 Summary of Update Equations

To give a better overview of the Kalman Equations, the summary below is pre-
sented.

We want to estimate an quantity x̄k that changes dynamically according to
the linear system

x̄k = Φk−1x̄k−1 + w̄k−1, w̄k ∼ N(0̄, Qk), (C.10)

and can be measured by

z̄k = Hkx̄k + v̄k, v̄k ∼ N(0̄, Rk). (C.11)

The initial conditions that must be known are

x̂+
0 = E [x̄0] , P+

0 = E
[

(x̄0 − x̂+
0)(x̄0 − x̂+

0)T
]

. (C.12)

The estimate of the state and the error covariance matrix can now be extrapo-
lated to the next time step k,

x̂−
k = Φk−1x̂

+
k−1 (C.13)

C.2 Extended Kalman Filtering 143

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Qk−1. (C.14)

The Kalman gain Kk and the error covariance P+
k are updated,

Kk = P−
k HT

k

[

HkP−
k HT

k + Rk

]−1
(C.15)

P+
k = (I − KkHk)P−

k (C.16)

where Equation (C.16) is a shorter form of Equation (C.6) obtained by substi-
tuting with Equation (C.15). Finally the measurement z̄k can be used to update
the state vector,

x̂+
k = x̂−

k + Kk(z̄k − Hkx̂
−
k). (C.17)

The algorithm then continues by iterating Equation (C.13) – (C.17).

C.2 Extended Kalman Filtering

Not all problems are possible to express with the linear equations in Equa-
tion (C.10) and (C.11). A more general formulation that also models non-linear
cases is

{

x̄k+1 = fk(x̄k) + w̄k, w̄k ∼ N(0̄, Qk),

z̄k = hk(x̄k) + v̄k, v̄k ∼ N(0̄, Rk).
(C.18)

Here fk(·) and hk(·) are non-linear functions of the state x̄k. We have the same
initial conditions as in the linear case

x̂+
0 = E [x̄0] , P+

0 = E
[

(x̄0 − x̂+
0)(x̄0 − x̂+

0)T
]

. (C.19)

The extrapolation of the state can be performed using the non-linear equation

x̂−
k = fk−1(x̂

+
k−1), (C.20)

but the propagation of the error covariance matrix must be approximated using
the truncated Taylor series

P−
k = Fk−1(x̂

+
k−1)P

+
k−1Fk−1(x̂

+
k−1)

T + Qk−1, (C.21)

where

Fk−1(x̂
+
k−1) =

∂fk−1(x̄)

∂x̄

∣

∣

∣

∣

∣

x̄=x̂
+

k−1

(C.22)

is the linear term of the Taylor expansion of fk(x̄k). The update of the Kalman
gain Kk and the error covariance P+

k are also done using the Taylor series

Kk = P−
k Hk(x̂−

k)T
[

Hk(x̂−
k)P−

k Hk(x̂−
k)T + Rk

]−1
(C.23)

P+
k = (I − KkHk(x̂−

k))P−
k , (C.24)

144 Extended Kalman Filtering

where

Hk(x̂−
k) =

∂hk(x̄)

∂x̄

∣

∣

∣

∣

∣

x̄=x̂
−

k

(C.25)

is the linear term of the Taylor expansion of hk(x̄k). Finally, the non-linear
measurement function hk(·) is used together with the measurement z̄k to update
the state vector,

x̂+
k = x̂−

k−1 + Kk(z̄k − hk(x̂−
k)). (C.26)

C.2.1 Optimality

The linear Kalman filter is the optimal solution to the linear problem of Equa-
tions (C.10) and (C.11). The extended Kalman filter, since it is based on ap-
proximations, does not claim optimality. In fact, there is no guarantee that
Extended Kalman filtering will produce an estimate that is close to the truly
optimal solution of the non-linear Equations (C.18). For example, the gaussian
characteristic of the noise is not preserved when filtered through non-linear fil-
ters. Fortunately, the method has been shown to work well in many practical
applications, as reported by Gelb et al. [26].

C.3 Properties of Rk

Scrutinizing equations (C.14) through (C.16), it is evident that Kk, P−
k and

P+
k are estimated only from parameters that are known a priori — there is no

feedback from the measurement z̄k or the state estimate x̂k to these matrices.
As long as Φk, Hk, Qk and Rk are known, Kk, P−

k and P+
k can be calculated

in advance and be stored in memory. This is a good thing when computer
processing power must be kept low. Since Pk is the covariance of the error, it
is also possible to know the error of the estimate in advance. For instance, it
is possible to calculate that the error in the first element of the estimate x̂ at
time k = 1000 will have a variance of P1000(0, 0) = 0.0001, even before the first
measurement has taken place. This highlights the importance of Φk, Hk, Qk

and Rk being correct, since there is no mechanism for correcting bad guesses of
these matrices1 based on the measurements z̄k. Especially dangerous is if, for
instance, a measurement error covariance Rk is used that is “smaller” than in
reality, since the filter then will trust the measurements more than it should,
with a possible divergence of the state estimation error as a result.

C.3.1 Subspace Locking

In an application where Rk is estimated automatically such as in Section 10.3, it
is important to make sure that the smallest value that can come out of such an

1Correcting matrices Φk, Hk, Qk and Rk falls into the topic of Adaptive Kalman Filtering,
described for instance by Gelb et al. [26].

C.3 Properties of Rk 145

estimation is large enough. The following example illustrates what can happen
if too small a variance is used. Consider the simple scalar system

xk = xk−1 + wk−1

zk = xk + vk.
(C.27)

which is equal to (C.10) and (C.11) for Φk = 1 and Hk = 1. If the variance
Rk = Var [vk] is set to zero for a certain k, the state variable xk will be set to the
incoming measurement zk irrespectively of all previous measurements: Assuming
the variance P−

k to be 1, the matrix Kk will equal (using Equation (C.15))

Kk = P−
k HT

k

[

HkP−
k HT

k + Rk

]−1
=

= 1 [1 + 0]
−1

=

= 1.

(C.28)

A Kk of 1 means that only the measurement will matter for the update of the
state x̂−

k . If, for instance, previous measurements have generated the prediction
x̂−

k = 3 and the measurement is zk = 27, the new state estimate x̂+
k will be

x̂+
k = x̂−

k + Kk(z̄k − Hkx̂
−
k) =

= 3 + 1(27 − 3)

= 27.

(C.29)

If the measurement zk = 27 is bad, the state estimate has been ruined in a single
step. Worse still, if normal values of Rk are used for future measurements, the
erroneous value will stay for some time. How long it will stay depends on the
variance of the state noise Qk = Var [wk]. Indeed, if Qk = 0, the erroneous
value will stay indefinitely: Using Equation (C.16) yields

P+
k = (I − KkHk)P−

k =

= (1 − 1)P−
k =

= 0,

(C.30)

which inserted into Equation (C.14) gives

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Qk−1 =

= 1 · 0 · 1 + 0 =

= 0.

(C.31)

Thus both P+
k and P−

k will always be zero in the future, which in turn means
that

Kk = P−
k HT

k

[

HkP−
k HT

k + Rk

]−1
=

= 0 · HT
k

[

HkP−
k HT

k + Rk

]−1
=

= 0,

(C.32)

146 Extended Kalman Filtering

and hence
x̂+

k = x̂−
k + Kk(z̄k − Hkx̂

−
k) =

= 27 + 0(z̄k − 3)

= 27.

(C.33)

C.3.2 Multi-Dimensional Case

In the multi-dimensional case, a singular covariance matrix Rk plays a similar
role to that of a zero variance. In this case, the estimated state vector x̂+

k will be
restricted to a subspace of the solution space. This is illustrated in the following
two-dimensional example system,

x̄k = x̄k−1 + w̄k−1, w̄k ∼ N(0̄, I),

z̄k = x̄k + v̄k, v̄k ∼ N(0̄, Rk),
(C.34)

which is equivalent to Equations (C.10) – (C.11) for Φk = Hk = Qk = I. Rk is
set to the singular matrix

Rk =

[

1 1
1 1

]

(C.35)

which gives a correlation coefficient of 1 between z1 and z2. This means that
the error in both directions is believed to be of exactly the same size. If the

next measurement is z̄k =
(

2 3
)T

for instance, the above Rk means that the

correct solution must lie on the line through
(

2 3
)T

with slope 1: x2 = x1 +1.

Assuming P−
k = I, Kk can be calculated as

Kk = P−
k HT

k

[

HkP−
k HT

k + Rk

]−1
=

= II [III + Rk]
−1

=

=

[

2 1
1 2

]−1

=

=
1

3

[

2 −1
−1 2

]−1

.

(C.36)

If the previous state prediction x̂−
k =

(

8 3
)T

, the new estimate will become

x̂+
k = x̂−

k + Kk(z̄k − Hkx̂
−
k) =

=

(

8
3

)

+
1

3

[

2 −1
−1 2

] {(

2
3

)

−
(

8
3

)}

=

=

(

8
3

)

+
1

3

(

−12
6

)

=

=

(

4
5

)

,

(C.37)

which is on the line x2 = x1 + 1. The situation is illustrated in Figure C.1.

C.3 Properties of Rk 147

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

11

x1

x2

the line x2 = x1 + 1
previous state
new measurement
resulting state

Figure C.1: The singular Rk forces the state to lie on the line x2 = x1 + 1. Due to
the measurement (circle), the state estimate jumps from the old location (triangle) to
a point on the line (square).

In summary, a singular Rk will constrain the state vector x̂ to a subspace of the
solution space. It will be locked there for a time that depends on Qk. Similar
problems occur when Rk is close to singular. The situation can be avoided by
choosing Rk wisely. For extended Kalman filters, this is even more important,
since a displaced state vector will mean that the linearizations performed in the
next step will be wrong, which could make the state estimation error diverge. A
good rule of thumb is that the standard deviation in any direction of Rk never
should be smaller than one pixel.

148 Extended Kalman Filtering

Appendix D

Variance Calculations

In Section 10.3.1, the covariance matrix of the noise is assumed to be known
up to a constant ξ. Given a measurement of the summed squared error

√
SSD,

a Maximum Likelihood estimate of ξ is obtained. This chapter will go through
in detail how this is done, both for the four-dimensional case and for the two-
dimensional case.

D.1 Four-Dimensional Case

Presume

S = ∆XT A∆X, (D.1)

where A is a symmetric positive definite 4×4 matrix and ∆X = (X1,X2,X3,X4).
Moreover, assume that ∆X ∼ N(0, ξA−1) where ξ is a positive scalar. The cu-
mulative distribution function (cdf) of S will then be

FS(s) =Pr{S < s} = Pr{∆XtA∆X < s} =

=

∫

xT Ax<s

1

(2π)2|ξA−1| 12
e−

1
2
xT (ξA−1)−1xdx =

=

∫

xT Ax<s

1

(2π)2ξ2|A|− 1
2

e−
1
2ξ

xT Axdx.

(D.2)

Since A is positive definite and symmetrical, Cholesky factorization A = QT Q
can be used. Using the variable substitution y = Qx with the Jacobian |∂x

∂y
| =

|Q−1| = |A|− 1
2 , this is transformed to

∫

yT y<s

1

(2π)2ξ2
e−

1
2ξ

yT ydy. (D.3)

150 Variance Calculations

Transforming to polar coordinates (y1, y2) = (r1 cos ϕ1, r1 sin ϕ1) and (y3, y4) =
(r2 cos ϕ2, r2 sinϕ2) with the Jacobian | ∂y

∂rϕ
| = r1r2 yields

2π
∫

0

2π
∫

0

∫

V

r1r2

(2π)2ξ2
e−

1
2ξ

r2
1+r2

2dr1dr2dϕ1dϕ2, (D.4)

where V is the area {r|r2
1 + r2

2 < s, r1 > 0, r2 > 0}. Integrating over ϕ1 and ϕ2

and parameterizing V gives

√
s

∫

0

√
s−r2

1
∫

0

r1r2

ξ2
e−

1
2ξ

r2
1+r2

2dr1dr2 =

√
s

∫

0

[

−r1

ξ
e−

1
2ξ

r2
1+r2

2

]

√
s−r2

1

0

dr1 =

=

√
s

∫

0

−r1

ξ
e−

s
2ξ +

r1

ξ
e−

1
2
r2
1dr1 =

[

− r2
1

2ξ
e−

s
2ξ − e−

1
2
r2
1

]

√
s

0

=

= − s

2ξ
e−

s
2ξ − e−

s
2 + 0 + 1 = 1 − (1 +

s

2ξ
)e−

s
2ξ .

(D.5)

Thus the cdf of S is FS(s) = 1 − (1 + s
2ξ

)e−
s
2ξ , the pdf is ∂

∂s
FS(s), i.e.,

∂

∂s
(1 − (1 +

s

2ξ
)e−

s
2ξ) = −(1 +

s

2ξ
)(− 1

2ξ
)e−

1
2ξ

s − (
1

2ξ
)e−

s
2ξ =

= − 1

2ξ
e−

s
2ξ

[

1 − (1 +
s

2ξ
)

]

=
s

4ξ2
e−

s
2ξ .

(D.6)

D.1.1 Maximum Likelihood

Using the pdf of S and a measurement of s, the parameter ξ of the distribution
can be estimated using Maximum Likelihood,

ξ∗ = argmax
ξ

L(ξ). (D.7)

Since only one measurement is available, the (log-) likelihood function will be

L(ξ) = ln fS(s) = ln(
s

4ξ2
e−

1
2ξ

s) = ln(
s

4ξ2
) − s

2ξ
. (D.8)

Differentiating L(ξ) and setting to zero

L′(ξ∗) =
1

(s
4ξ∗2)

(
s

4
(−2)ξ∗−3) − 1

2
(−1)ξ∗−2s =

= − 2

ξ∗
+

s

2ξ∗2
=

=
1

ξ∗
(

s

2ξ∗
− 2) = 0

(D.9)

D.2 Two-Dimensional Case 151

gives
s

2ξ∗
− 2 = 0 (D.10)

and thus

ξ∗ =
1

4
s. (D.11)

The solution ξ∗ = s
4 is a maximum since

L′′(ξ) =
1

ξ2
(2 − s

ξ
) (D.12)

so

L′′(ξ∗) = L′′(
s

4
) =

16

s2
(2 − 4) = −32

s2
< 0 (D.13)

for any s.

D.1.2 Bias

To investigate whether the estimate ξ∗ = 1
4s from Equation (D.11) is biased,

the expected value of S is calculated.

E [S] =

∞
∫

0

s
s

4ξ2
e−

s
2ξ ds. (D.14)

By partial integration twice this can be transformed to

E [S] =

∞
∫

0

2e−
s
2ξ ds =

[

2(−2ξ)e−
s
2ξ

]∞

0
= 4ξ. (D.15)

The expected value of Equation (D.11) equals

E [ξ∗] = E

[

1

4
S

]

=
1

4
4ξ = ξ, (D.16)

and the estimate is thus unbiased.

D.2 Two-Dimensional Case

The two dimensional case is similar, but less complex. Presume

S = ∆XT A∆X, (D.17)

where A is a symmetric positive definite 2 × 2 matrix and ∆X = (X1,X2).
Moreover, assume that ∆X ∼ N(0, ξA−1) where ξ is a positive scalar. The

152 Variance Calculations

cumulative distribution function (cdf) of S will then be

FS(s) =Pr{S < s} = Pr{∆XtA∆X < s} =

=

∫

xT Ax<s

1

(2π)|ξA−1| 12
e−

1
2
xT (ξA−1)−1xdx =

=

∫

xT Ax<s

1

(2π)ξ|A|− 1
2

e−
1
2ξ

xT Axdx.

(D.18)

Since A is positive definite and symmetrical, Cholesky factorization A = QT Q
can be used. Using the variable substitution y = Qx with the Jacobian |∂x

∂y
| =

|Q−1| = |A|− 1
2 , this is transformed to

∫

yT y<s

1

(2π)ξ
e−

1
2ξ

yT ydy. (D.19)

Transforming to polar coordinates (y1, y2) = (r cos ϕ, r sinϕ) with the Jacobian
|∂y1y2

∂rϕ
| = r yields

2π
∫

0

√
s

∫

0

r

(2π)ξ
e−

1
2ξ

r2

drdϕ, =

√
s

∫

0

r

ξ
e−

1
2ξ

r2

=
[

−e−
1
2ξ

r2
]

√
s

0
= (D.20)

=

{

1 − e−
s
2ξ , s ≥ 0

0, s < 0
. (D.21)

Differentiating with respect to s gives fS(s) = 1
2ξ

e−
s
2ξ , which is an exponential

distribution with mean 2ξ.

D.2.1 Maximum Likelihood

Using the pdf of S and a measurement of s, the parameter ξ of the distribution
can be estimated using Maximum Likelihood,

ξ∗ = argmax
ξ

L(ξ). (D.22)

with the (log-) likelihood function

L(ξ) = ln fS(s) = ln
1

2ξ
e−

s
2ξ = ln(

1

2ξ
) − s

2ξ
. (D.23)

Differentiating L(ξ) and setting to zero

L′(ξ∗) =
1

(1
2ξ∗

)
(− 1

2ξ∗2
) +

s

2ξ∗2

= − 1

2ξ∗2
(2ξ∗ − s) = 0

(D.24)

D.2 Two-Dimensional Case 153

gives
2ξ∗ − s = 0

ξ∗ =
s

2
.

(D.25)

This solution is a maximum since

L′′(ξ) =
1

ξ2
(1 − s

ξ
) (D.26)

so

L′′(ξ∗) = L′′(
s

2
) =

4

s2
(1 − 2) = − 4

s2
< 0 (D.27)

for any s.

D.2.2 Bias

The expected value of Equation (D.11) equals

E [ξ∗] = E

[

1

2
S

]

=
1

2
2ξ = ξ, (D.28)

and the estimate is thus unbiased.

154 Variance Calculations

Bibliography

[1] Andrea Dell’Acqua, Augusto Sarti, Stefano Tubaro, “Effective Analysis of
Image Sequences for 3D Camera Motion Estimation,” Proceedings of the
EuroImage ICAV3D 2001 Conference, Greece, pp. 307-310, May 2001.

[2] Gilad Adiv, “Determining Three-Dimensional Motion and Structure from
Optical Flow Generated by Several Moving Objects,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 7, no. 4, pp. 384-401,
July 1985.

[3] J. Ahlberg and H. Li, “Representing and compressing MPEG-4 facial an-
imation parameters using facial action basis functions,” Technical Report,
LiTH-ISY-R-2010, ISSN 1400-3902, Linköping University, 1998.

[4] J. Ahlberg, “Facial Feature Tracking using an Active Appearance-driven
Model,” Proceedings of the EuroImage ICAV3D 2001 Conference, Greece,
pp. 116-119, May 2001.

[5] K. Aizawa, H. Harashima, and T. Saito, “Model-based image coding system
— construction of a 3-D model of a person’s face,” Proc. Int. Picture Coding
Symp., Stockholm, Sweden, 1987, paper 3.11.

[6] Harry C. Andrews and Claude L. Patterson, “Singular value decomposition
(SVD) image coding,” IEEE Transactions on Communications, pp. 425–
432, April 1976.

[7] Kalle Åström, Invariancy Methods for Point, Curves and Surfaces in Com-
putational Vision, Ph. D. Thesis, Departement of Mathematics, Lund Uni-
versity, Sweden 1996.

[8] A. Azarbayejani and A. Pentland, “Recursive Estimation of Motion, Struc-
ture, and Focal Length,” IEEE Pattern Analysis and Machine Intelligence,
vol. 17, no. 6, pp. 562-575, June 1995.

[9] A. Azarbayejani, T. Starner, B. Horowitz, Alex P. Pentland “Visually Con-
trolled Graphics,” IEEE Pattern Analysis and Machine Intelligence, vol.
15, no. 6, June 1993.

[10] J. L. Barron, D. J. Fleet and S. S. Beauchemin, “Performance of Optical
Flow Techniques,” International Journal of Computer Vision, vol. 12 no.
1, pp. 43-77, 1994.

156 BIBLIOGRAPHY

[11] S. Basu, I. Essa and A. Pentland, “Motion regularization for model-based
head tracking,” Proceedings of ICPR, pp. 611-616, 1996.

[12] M. Bichsel and A. Pentland, “Human face recognition and the face image
set’s topology,” CVGIP; Image Understanding, vol. 59, no. 2, March, pp.
254–261, 1994.

[13] M. J. Black and Y. Yacoob, “Recognizing facial expressions in image se-
quences using local parameterized models of image motion,” International
Journal of Computer Vision, 25(1), pp. 23-48, 1997.

[14] C. Bregler and Y. Konig, “Eigenlips for Robust Speech Recognition,” Proc.
of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Adelaide,
Australia, 1994.

[15] Ted J. Broida, S. Chandrashekhar and Rama Chellappa. “Recursive es-
timation of 3-d motion from a monocular image sequence,” IEEE Trans.
Aerop. Electron. Syst., 26(4):639-656, July 1990.l

[16] M. L. Cascia, S. Sclaroff and V. Athitsos “Fast, Reliable Head Tracking un-
der Varying Illumination: An Approach Based on Registration of Texture-
Mapped 3D Models,” IEEE Transactions on Pattern Analyis and Machine
Intelligence, vol. 22, no. 4, pp. 322-336, April 2000.

[17] T.F.Cootes, G.J. Edwards and C.J.Taylor. “Active Appearance Models,”
in Proc. European Conference on Computer Vision 1998 (H.Burkhardt &
B. Neumann Ed.s). vol. 2, pp. 484-498, Springer, 1998.

[18] N.P. Costen, I.G. Craw, G.J. Robertsona and S. Akamatsu “Automatic face
recognition: What representation?,” Computer Vision — Proceedings of
ECCV’96, vol. I, no. 1064, in Lecture Notes on Computer Science, Springer-
Verlag, pp. 504–513, 1996.

[19] J. L. Crowley and F. Berard, “Multi-Modal Tracking of Faces for Video
Communications,” In Proceedings of IEEE Conference in Computer Vision
and Pattern Recognition, CVPR ’97, San Juan, June 1997.

[20] Douglas DeCarlo and Dimitris Metaxas, “The Integration of Optical Flow
and Deformable Models with Applications to Human Face Shape and Mo-
tion Estimation,” Proceedings of CVPR ’96, pp. 231-238, 1996.

[21] O. D. Faugeras, “What can be seen in three dimensions with an uncal-
ibrated stereo rig,” In G. Sandini, editor, Computer Vision – Proc. 2.
ECCV, pp. 563–578. Springer Verlag, May 1992.

[22] O. Faugeras, Three-Dimensional Computer Vision: A Geometric View-
point, MIT Press, 1993

[23] R. Forchheimer and O. Fahlander, “Low bit-rate coding through anima-
tion,” Proc. Int. Picture Coding Symp., Davis, CA, pp. 113–114, 1983.

[24] R. Forchheimer, O. Fahlander and T. Kronander, “A semantic approach to
the transmission of face images,” Proc. Int. Picture Coding Symp., Cesson-
Sevigne, France, paper 10.6, 1984.

BIBLIOGRAPHY 157

[25] K. Fukunaga, Introduction to statistical pattern recognition, Second Edi-
tion, San Diego: Academic Press, 1990.

[26] A. Gelb (editor) Applied Optimal Estimation Cambridge, MA: The MIT
Press, 1974.

[27] G. D. Hager and P. N. Buelhumeur, “Real-Time Tracking of Image Re-
gions with Changes in Geometry and Illumination,” IEEE Conference on
Computer Vision and Pattern Recognition, pp. 403-410, 1996.

[28] R. I. Hartley, “Ambigous Configurations for 3-View Projective Reconstruc-
tion,” Sixth European Conference on Computer Vision, Dublin, Ireland,
pp. 922-935, June/July 2000.

[29] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
ISBN 0-521-62304-9, Cambridge University Press, 2000.

[30] M. Harville, A. Rahimi, T. Darell, G. Gordon, J. Woodfill, The Proceedings
of the Seventh IEEE International Conference on Computer Vision, 1999,
vol. 1, pp. 206-213, 1999.

[31] Anders Heyden, Geometry and Algebra of Multiple Projective Transforma-
tions, Ph.D. Thesis, Department of Mathematics, Lund University, Sweden
1995.

[32] Anders Heyden and Kalle Åström, “Computer Vision,” lecture notes for the
VISIT-course, Centre for Mathematical Sciences, Lund University, 1999.

[33] ISO/IEC Standard 14496-2, Information Technology — Coding of audio-
visual objects — Part 2: Video. International Standard, First edition 1998-
10.

[34] T. Jebara, A. Azarbayejani and A. Pentland, “3D Structure from 2D mo-
tion,” IEEE Signal Processing Magazine,, pp. 66-84, May 1999.

[35] T. Jebara and A. Pentland, “Parametrized Structure from Motion for 3D
Adaptive Feedback Tracking of Faces,” IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR’97), 1997.

[36] Tony Jebara, Kenneth Russel and Alex Pentland “Mixtures of eigenfaces
for real-time structure from texture,” Proceedings of ICCV’98, Bombay,
India, January 4–7, 1998.

[37] I. T. Jolliffe, Principal component analysis. Springer-Verlag New York Inc.,
1986.

[38] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-
lems,” Journal of Basic Engineering (ASME), vol. 82D, pp. 35-45, March
1960.

[39] M. Kirby and L. Sirovich, “Application of the Karhunen-Loève procedure
for the characterization of human faces,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 12, no. 1, January 1990.

[40] H. Li, Low Bitrate Image Sequence Coding, Ph.D. Thesis No 318, Linkoping
University, Sweden 1993

158 BIBLIOGRAPHY

[41] H. Li, A. Lundmark and R. Forchheimer, “Image sequence coding at very
low bit rates: A review,” IEEE Trans. Image Proc., vol. 3, pp. 589–609,
Sept 1994.

[42] H. Li and R. Forchheimer, “Two-view facial movement estimation,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 4, no. 3, June 1994.

[43] H. Li, P. Roivainen, and R. Forchheimer, “3-D motion estimation in model-
based facial image coding,” IEEE Trans. on PAMI, vol. 15, no. 6, pp.
545-555, June 1993.

[44] H.C. Longuet-Higgins, “A computer algorithm for reconstructing a scene
from two projections,” Nature, 293:133–135, 1981.

[45] K. Mase and A. Pentland, “LIP READING: Automatic Visual Recogni-
tion of Spoken Words,” Proc. Image Understanding and Machine Vision,
Optical Society of America, June 1989.

[46] Y. Matsumoto, A. Zelinsky, “Real-time Face Tracking System for Human-
Robot Interaction,” Proceedings of 1999 IEEE International Conference on
Systems, Man, and Cybernetics (SMC’99), pp. II-830-II-835, Tokyo, Japan,
October 12-15, 1999.

[47] B. Moghaddam and A. Pentland, “An automatic system for model-based
coding of faces,” IEEE Data Compression Conference, Snowbird, Utah,
March 1995.

[48] B. Moghaddam and A. Pentland, “Probabilistic Visual Learning for Object
Representation,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 19, no. 7, pp. 696 - 710, July 1997.

[49] D. Nistér, Automatic Dense Reconstruction from Uncalibrated Video Se-
quences, Ph.D. Thesis, Royal Institute of Technology, Sweden, March 2001.

[50] N. Oliver, A. Pentland and F. Berard “LAFTER: A Real-time Lips and
Face Tracker with Facial Expression Recognition,” Proceedings of CVPR’97
San Juan, Puerto Rico, June 1997.

[51] D. Pearson, “Developments in model-based video coding,” Proc. IEEE, vol.
83, no. 6, pp. 829–906, 1995.

[52] A. Pentland, B. Moghaddam, T. Starner “View-based and modular
eigenspaces for face recognition,” IEEE Conference on Computer Vision
& Pattern Recognition, 1994.

[53] P. Roivainen, “Motion estimation in model-based coding of human faces,”
Ph.D. Thesis LIU-TEK-LIC-1990:25, ISY, Linköping Univ., Sweden, 1990.

[54] M. Rydfalk, “CANDIDE, a parameterized face,” Technical Report, LiTH-
ISY-I-0866, Linköping University, 1987.

[55] A. Said and W.A. Pearlman, “A new fast and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 6, no. 3, pp. 243–250, June 1996.

BIBLIOGRAPHY 159

[56] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell
System Technical Journal, vol. 27, pp. 379—423, 623—656, July, October,
1948.

[57] J. Shapiro. “Embedded image coding using zerotrees of wavelet coeffi-
cients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–
3462, December 1993.

[58] A. Shashua and M. Werman, “Trilinearity of Three Perspective Views and
its Associated Tensor,” in International Conf. on Computer Vision, Cam-
bridge, MA, pp. 920-925, 1995.

[59] L. Sirovich and M. Kirby, “Low-dimensional procedure for the characteri-
zation of human faces” J. Opt. Soc. Am., vol. 4, no. 3 pp. 519–524, March
1987.

[60] S. Spanne, Föreläsningar i MATRISTEORI, Department of Mathematics,
Lund Institute of Technology, Printed in Lund, 1993.

[61] G. P. Stein and A. Shashua, “On Degeneracy of Linear Reconstruction
from Three Views: Linear Line Complex and Applications,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, 21(3):244-251, 1999.

[62] G. Strang, Linear algebra and its applications, New York: Academic Press,
1980.

[63] J. Ström, F. Davoine, J. Ahlberg, H. Li and R. Forchheimer. “Very Low
Bit Rate Facial Texture Coding,” International Workshop on Synthetic -
Natural Hybrid Coding and Three Dimensional Imaging, Rhodes, Greece,
September 1997.

[64] J. Ström, “Facial Texture Compression for Model-Based Coding,” Licen-
tiate Thesis, LIU-TEK-LIC-1998-51, ISY, Linköping University, Sweden,
August 1998.

[65] J. Ström and P. C. Cosman, “Medical Image Compression with Lossless
Regions of Interest,” Signal Processing, vol. 59, no. 2, June 1997.

[66] J. Ström, T. Jebara, S. Basu, and A. Pentland, “Real Time Tracking and
Modeling of Faces: An EKF-based Analysis by Synthesis Approach,” Pro-
ceedings of the Modelling People Workshop at ICCV’99, August 1999.

[67] J. Ström, T. Jebara and A. Pentland, “Model-Based Real-Time Face Track-
ing with Adaptive Texture Update,” Technical Report, LiTH-ISY-R-2342,
Linköping University, Sweden, March 30, 2001.

[68] J. Ström, “Reinitialization of a Model-Based Face Tracker,” Proceedings of
the EuroImage ICAV3D 2001 Conference, May 2001.

[69] J. Ström, “Structure from Motion of Planar Surfaces, (Analysis of an EKF
Based Approach),” Proceedings of Symposium on Image analysis, Swedish
Society for Automated Image Analysis, pp. 13-16, Norrköping, Sweden,
March 2001.

[70] P. Torr, W. Fitzgibbon and A. Zisserman, “Maintaining multiple motion
model hypetheses over many views to recover matching and structure,” in

160 BIBLIOGRAPHY

Proc. of Sixth Int. Conf. on Computer Vision, Bombay, India, pp. 485-491,
Jan 1998.

[71] B. Triggs, ”Autocalibration from planar scenes,” in Proceedings of the 5th
European Conference on Computer Vision (ECCV’98), Freiburg, Germany,
pp. 89–105, June 1998.

[72] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. of Cognitive
Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[73] G. K. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, no. 4, pp. 30–40, Apr. 1991.

[74] W.J. Welsh, “Model-based coding of moving images at very low bit rates,”
Proc. Int. Picture Coding Symp., Stockholm, Sweden, paper 3.9, 1987.

[75] W. Wunderlich, “Rechnerische Rekonstruktion eines Ebenen Objekts aus
Zwei Photographien,” Mitteilungen der Geodätischen Institute der Technis-
chen Universität Graz, Folge 40 (Festschrift K. Rimmer zum 70. Geburt-
stag), pp. 365–377.

[76] Ye Zhang and Chandra Kambhamettu, “Robust 3D Head Tracking Under
Partial Occlusion,” Fourth International Conference on Face and Gesture
Recognition, pp. 176-182, Grenoble, France, March 2000.

