
Lossless Compression of Already Compressed Textures

Jacob Strom ∗

Ericsson Research
Per Wennersten†

Ericsson Research

Abstract

Texture compression helps rendering by reducing the footprint in
graphics memory, thus allowing for more textures, and by lowering
the number of memory accesses between the graphics processor and
memory, increasing performance and lowering power consumption.
Compared to image compression methods like JPEG however, tex-
tures codecs are typically much less efficient, which is a problem
when downloading the texture over a network or reading it from
disk. Therefore, in this paper we investigate lossless compression
of already compressed textures. By predicting compression param-
eters in the image domain instead of in the parameter domain, a
more efficient representation is obtained compared to using general
compression such as ZIP or LZMA. This works well also for pixel
indices that have previously proved hard to compress. A 4-bit-per-
pixel format can thus be compressed to around 2.3 bits per pixel
(bpp), or 9.6% of the original size, compared to around 3.0 bpp
when using ZIP or 2.8 bpp using LZMA. Compressing the original
images with JPEG to the same quality also gives 2.3 bpp, meaning
that texture compression followed by our packing is on par with
JPEG in terms of compression efficiency.

CR Categories: I.3.2 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, Shading, shadowing and texture
E.4.1 [Data]: Coding and Information Theory—Data compaction
and compression

Keywords: texture compression, data compression

1 Introduction

An important trend in real-time graphics rendering is that growth
in computational power and RAM size outpace growth in memory
bandwidth [Owens 2005]. This means that memory bandwidth is
often a performance limiting factor for PC graphics cards, game
consoles and other rendering devices today, and will likely be so
increasingly often in the future. On mobile devices, memory ac-
cesses will also drain battery life. Texture compression, introduced
by Knittel et al. [1996], Beers et al. [1996] and Torborg and Ka-
jiya [1996] is one technique that saves bandwidth. It works by
compressing the texture data, transferring it in compressed form
over the bus, and finally decompressing it on-the-fly on the GPU.
Compressed textures have the added bonus of also demanding less
graphics RAM storage space, although the bandwidth saving ef-
fect is typically the more important, as mentioned by Inada and
McCool [2006]. Finally compressed textures take shorter time to
download over a network compared to uncompressed textures, and
even compared to lossless (exact) compression methods such as

∗e-mail: jacob.strom at ericsson.com
†e-mail:per.wennersten at ericsson.com

PNG. However, compared to other lossy (non-exact) image com-
pression methods such as JPEG, the difference is still huge: Com-
pressing an image with JPEG to the same quality level as a 4 bpp
texture codec may result in a file that is perhaps 60% of the size
of the texture compressed file. In some cases the time it takes to
download the textures of an application may be a major limiting
factor on an application: You may be prepared to wait five minutes
for your game to download and install, but perhaps not ten min-
utes. One solution can be to use a texture codec of lower bit rate,
such as the 2 bpp PVRTC [Fenney 2003] used on the iPhone. How-
ever, the lower rate also brings a lower image quality which may
not be acceptable in some cases. Furthermore, on many existing
platforms the lowest bit rate codec available is a 4 bpp codec such
as DXT1 [Iourcha et al. 1999] on desktops and Windows Phone 7
and ETC1 [Ström and Akenine-Möller 2005] on Android devices.
Another solution may be to transmit the textures as JPEGs (or sim-
ilar) over the network and recompress them on-the-fly to a texture
compression format before rendering. This strategy is used by van
Waveren to quickly stream in textures from disk [2006]. This is
often a good solution, especially if low bit rates are of interest, but
the resulting texture quality suffers for two reasons: First, the final
texture will include image artifacts both from JPEG and from the
texture codec. Second, to make recompression from JPEG to the
texture codec quick enough, shortcuts may be necessary, especially
on mobile devices with limited computational power. This low-
ers quality, especially when compared to slow, perhaps exhaustive
compression. Another approach is to further compress the textures
lossily [van Waveren 2006], which we will discuss in the next sec-
tion.

The solution in this paper is instead to compress the original images
with a texture codec and then try to further compress the resulting
images using domain-specific lossless data compression. We will
refer to this as packing in order to distinguish it from the compres-
sion in the texture codec. This way, slow off-line compression can
be employed, and yet a reasonably-sized file can be transferred. On
the client side, the data is unpacked after download and the file can
be forwarded to the graphics hardware. Unlike general compression
such as ZIP, we will apply domain-specific knowledge to increase
compression efficiency.

The next section will describe previous work. Then our method
will be presented, followed by a section on results. Finally, we will
discuss limitations.

2 Previous Work

With the exception of van Waveren’s work [2006], we have not
found any previous work on the packing of already compressed tex-
tures. Therefore we will first describe general texture compression,
followed by a description of van Waveren’s work.

Delp and Mitchell [1979] propose a fixed rate image compression
algorithm, where each pixel in a 4 × 4 block can choose from
two gray levels using a bitmask. The two 8-bit gray values and
the bit mask together occupy 32 bits, or 2 bits per pixel (bpp).
Campbell et al. [1986] extend this to color by choosing two in-
dexed colors instead of gray levels. The limitation to two colors
per block gives rise to banding artifacts, so Iourcha et al. [1999]
introduce two more colors in their DXTC/S3TC algorithm, which
has become a de facto standard on desktops. The two extra col-

ors are linearly interpolated from the original two, and two bits per
pixel are used to choose between the four colors, resulting in 64
bits per block or 4 bpp. Due to the interpolation the colors of a
DXTC block lie along a line in RGB-space, which is a good ap-
proximation of most image blocks. Direct3D 11 contains two new
texture compression formats; BC6 and BC7 [BPTC 2010]. They
are based on DXTC but use two or three pairs of colors, generat-
ing two lines per block in RGB space. A bitmask to select between
the two lines is needed, and this bitmask is vector quantized us-
ing up to 64 patterns. On handheld devices, several methods exist.
PVRTC developed by Fenney [2003] is used on Apple’s iPhone.
It uses two low-resolution images A and B, both upscaled bilin-
early twice. Each pixel can then choose its color from either im-
age A, image B, or from two blend values between A and B. A 2
bpp version and a 4 bpp version exist. ETC1 [Ström and Akenine-
Möller 2005] is another mobile texture compression format which
is standardized—though not mandatory—on Android from version
2.2. It uses per-pixel luminance modification of a common base
color, and obtains quality on par with S3TC. ETC1 has been ex-
tended in steps; ETC2 provides higher quality by adding in extra
modes for certain corner cases [Ström and Pettersson 2007]; Ras-
musson et al. describe a codec based on smooth functions that uses
ETC2 as a fall-back [2010].

In the same paper where the JPEG-type streaming solution is pre-
sented, van Waveren also describes compression of already com-
pressed DXTC data [2006]. The two colors in the block are com-
pressed lossily; the two colors are placed into two RGB images of
1
4

the size in both the x- and y- dimension. Then these two images
are compressed using JPEG. The pixel indices are losslessly com-
pressed using run length or LZ-based compression. The compres-
sion efficiency is improved by rotating and/or mirroring the indices
to line them up. The compressed data is reported to be around 75%
of the original index data. This is the most similar previous work,
and has been the source of inspiration for our work.

Although not explicitly described anywhere, we also count regular
ZIP-type compression of the entire compressed texture as previous
work. Such compression typically gives a file size of of approx-
imately 75% of the original size. Thus a 4 bpp format becomes
around 3 bpp after zipping. LZMA gives higher compression, with
file sizes of around 70% of the original.

3 The Proposed Algorithm

Our work is similar to that of van Waveren [2006] in that we take
a compressed texture and attempt to further compress it for storage
and transmission. Although we believe that the general principle of
our work can be applied to any texture compression format, our way
of packing has to be adapted to each texture codec specifically. We
have chosen ETC1 as our demonstration codec, and will therefore
go through that in some more detail.

In ETC1, the image is divided into 4× 4 blocks which is are com-
pressed to 64 bits each. The block is further divided into two half-
blocks of size 4 × 2 or 2 × 4, depending on the value of a bit
called the flip bit. Each half-block is assigned a base color, thus
two colors per 4 × 4 block are required. These are encoded ei-
ther as two RGB444-colors, or as one RGB555 color and a dif-
ferential color with three bits per color component. Selection be-
tween the individual and the differential encoding is signalled via
a diff bit. For each pixel, a 2-bit pixel index is also stored. This
is used to modify the luminance of each pixel by adding to the
base color a modifier from a table of four numbers. If the table
is {−8,−2, 2, 8}, the pixel index can specify to use, say, −8 as the
modifier. Assume the base color for the half block is (119, 51, 255)
after extension to eight bits. The resulting color for that pixel

is then (119, 51, 255) + (−8,−8,−8) = (111, 43, 247). Each
half-block also uses a table value to specify which of eight ta-
bles to use. For smooth blocks, the table above can be used,
whereas a block containing a sharp edge may select a table such
as {−106,−33, 33, 106}. The method of luminance modulation is
illustrated in Figure 1. The bits stored for each 4x4 block are diff
bit (1 bit), flip bit (1 bit), two base colors (24 bits), table value (3·2
= 6 bits) and pixel indices (32 bits), all in all 64 bits.

Figure 1: In ETC1 each 8-pixel half-block (left) is modulated by
luminance (middle) to produce the final output (right).

3.1 Compressing the Pixel Indices

As van Waveren points out [2006], the pixel indices are hard to
compress. The reason can be seen in Figure 2; even an area that
is flat in the decompressed image (middle) can be associated with
pixel indices that have lots of variance (right). This has led us to

Figure 2: Left: Decoded ETC1 image. Middle: A zoomin of a
smooth area. Right: Pixel indices of that area. It seems resonable
to believe that it is simpler to predict the colors (middle) than the
pixel indices directly (right).

the idea that it may be easier to predict the color of the pixel than
to predict the pixel index. Once the color has been predicted, all
four possible pixel indices from the table are tried. The pixel index
that produces a color closest to our predicted color will be selected
as our prediction of the pixel index. The method for pixel index
prediction can be summarized in the following steps.

1. Transmit all non-index bits, e.g., diff-, flip- color- and table-
value bits for the half-block in question.

2. Find the colors of the neighboring pixels that have already
been transmitted

3. Use the color of these neighboring pixels to predict the color
of the current pixel

4. Find the pixel index that produces the color closest to the pre-
dicted color. This is now our predicted pixel index

5. Encode the pixel index with help of the predicted pixel index

The decoder will have to do similarly. In particular, as soon as a
pixel index has been received, the pixel color will be decoded so
that it can be used for prediction of neighboring pixel indices:

1. Decode all non-index bits, e.g., diff-, flip- color- and table
value bits for the half-block in question.

2. Access the neighboring pixels that have already been decom-
pressed

3. Use the color of these neighboring pixels to predict the color
of the current pixel

4. Find the pixel index that produces the color closest to the pre-
dicted color. This is now our predicted pixel index

5. Decode the pixel index with help of the predicted pixel index

6. Decompress the pixel to obtain the pixel color

Using the surrounding pixel colors to thus predict the pixel index
gives a better guess than just using the surrounding pixel indices.
This is not that surprising given that the prediction is based on more
information, namely the other parameters of the block. Assume for
instance that we have predicted the color (249, 150, 25). Assume
also that the base color in the current half block is (240, 130, 0),
and that the current table is {−60,−18, 18, 60}.

The four possible pixel indices would then produce the following
colors:

pixel index modifier color ||color− prediction||2
3 -60 (180, 70, 0) 11786
2 -18 (222, 112, 0) 2798
0 18 (255, 148, 18) 89
1 60 (255, 190, 60) 2861

Directly we can see that only pixel index 0 gives a color that is
anywhere near the prediction. This is due to the fact that the table
contained such big values, information that is lost if prediction is
only done from previous pixel indices.

Getting a good pixel index prediction thus depends on getting a
good prediction of the color for the current pixel. We use the
neighboring pixels that have already been decoded; the pixel to
the left, the pixel above, called up, and the pixel one step up
and one step left, which we call diag. Four predictions are used,
and to choose which prediction to use, we calculate three mea-
sures: The first one measures how much difference there is between
the upper and left pixel in terms of deviation from the diagonal:
mA = ||diagg−upperg|−|diagg−leftg||, where |·| denotes abso-
lute value. We only use the green component of the colors in these
calculations. The second one measures the difference between the
upper and the diagonal pixel: mB = |diagg − upperg|, and the
third between the left and the diagonal: mC = |diagg − leftg|.

The prediction is then selected by the following pseudo code:

if m_A < 4 AND m_B < 4
use left+up-diag

else if m_A < 10
use (left+up)/2

else if m_A < 64
if m_B < m_C

use (3*left+up)/4
else

use (3*up+left)/4
end

else
if m_B < m_C

use left
else

use up
end

end

The reasoning is that if all three pixels are similar, it is reasonable to
believe that we are in a rather smooth area, and we can use a planar
prediction pred = left+up−diag. However, for pixels which are
less similar, we use pred = (left + up)/2, which is more robust.
If left and up are dissimilar, we assume that there is a line going
through the four pixels. Hence if the upper and diagonal pixels are
similar to each other but the left one is not, we assume a common
value in the left and the current pixel, and the prediction becomes
pred = left. We also have an “in between” type of prediction
which is (3 ∗ left + up)/4. Given the prediction of the color, we
can now get the prediction of the pixel index. We have also tried
the predictor from LOCO-I/JPEG-LS [Weinberger et al. 1996]:

pred =

{
min(up, left), if diag ≥ max(up, left)
max(up, left), if diag ≤ min(up, left)
up+ left− diag, otherwise.

(1)

This performs only slightly worse, yielding about 1% more bits on
the index data, and given its lower computational complexity it may
be an interesting alternative.

Our task is now reduced to compress the actual pixel index with
the help of the predicted pixel index. We use an adaptive arith-
metic coder [Witten et al. 1987] implemented by Wheeler [1996].
For reference we have used the source code of Wheeler without
changes. We have chosen an arithmetic coder mostly due to the
convenience of encoding single instances of random variables (with
skewed probability distributions) with less than one bit. In short, an
arithmetic coder can compress a variable given its probability dis-
tribution. An adaptive arithmetic coder continuously estimates this
probability distribution during encoding/decoding. Wheeler’s im-
plementation can handle alphabets of any size; hence there is no
need to binarize the data before handing it over to the arithmetic
coder. Arithmetic coding is quite complex — if a hardware or GPU
implementation is desired, a more hardware friendly entropy coder
may be preferrable.

One possibility would now be to encode the error between the pre-
dicted pixel index and the actual pixel index, error = actual −
pred. However, for our four possible pixel indices, this error value
ranges from -3 through 3, although only four values are actually
possible for each pixel. By using the same probability distribu-
tion for all four predictions, the arithmetic coder would estimate
non-zero probabilities even for the impossible values, resulting in
an inefficient encoding. Therefore our solution is to encode the
pixel value as is, but use four different probability distributions,
one for each prediction value. For instance, if the prediction is
0, the following probability distribution may be used after con-
vergence: {0.65, 0.15, 0.12, 0.08}. If the prediction is 2, we will
use another probability function that, after convergence, may look
like {0.06, 0.12, 0.69, 0.13}. Another note is that we use different
probability distributions for the different predictions. For instance,
the planar prediction is usually more accurate than, say, the pre-
diction (left + up)/2. Using the same probability distributions for
both would lower the efficiency of both encodings.

3.2 Compression of the Other Parameters

The other parameters are also encoded using the arithmetic encoder.
The flip bit is compressed as is, without prediction, using its own
probability distribution. Similarly, the diff bit is compressed with-
out prediction using its own distribution.

The table values are also sent as is. A table value of zero is the
most common, except in the cases when surrounding blocks have
nonzero table values. Therefore we will use different probability
distributions in these two cases. If the block is flipped (two 4 × 2
blocks) it makes sense to look for non-zero values in the above

block when encoding the top table value — we use the second table
value of the above block in these circumstances. This is illustrated
in Figure 3. In (a) and (b), where the block to predict (blue) is

(a)

(c)

(b)

(d)

Figure 3: Table prediction. (a) and (b): If the first sub-block (blue)
is flipped, the second sub-block (green) in the above block will be
used for prediction. If the green block has a non-zero table value,
one probability distribution will be used. If the green block has a
table value of zero, the other probability distribution will be used.
(c) and (d): If the first sub-block is non-flipped, the second sub-
block (green) in the left block will be used for prediction.

flipped, the second sub-block of the above block is used (marked
with green). If the block is non-flipped the second sub-block of the
left block will be used, as shown in (c) and (d). The second table
value (corresponding to the second sub-block) is encoded the same
way, but will use the first table value in the current block to select
probability distribution.

The two base colors in the block make up a large share of the data,
so any gain in compression efficiency will influence the end result
quite a bit. Therefore it is important to try to predict them well.

Just as for the pixel indices, the prediction of the base colors rely not
on previous base colors, but on the surrounding pixels. The colors
are compressed component by component, starting with red. This
is done as shown in Figure 4. In the example in the figure we have

Figure 4: Color prediction. The base color of the half-block
marked with blue is predicted from the surrounding pixel colors
that have already been encoded/decoded.

flip bit = 0, meaning that we have a standing 2× 4 half-block. The
half-block is marked with blue, and pixels that have not yet been
encoded/decoded are black. For such a standing block, the predic-
tion is simply the average of the red component of the surrounding
pixels; the two above, marked with green, and the four to the left,
marked with with red. The average must also be converted to the
appropriate number of bits: if the first color is supposed to be stored
with five bits we multiply our average color by (31/255) to get the
predicted red component. The prediction error in the red compo-
nent, errorred = actualred − predictionred, is now compressed

with the arithmetic coder. Just as in the case with the pixel indices,
only some of the values are possible. For instance, if the predicted
value is 21, only values -21 through 10 are possible, but since we
use the same probability distribution irrespectively of the predic-
tion, all values will have nonzero probabilities. However, values far
from zero have very small probabilities, so the inefficiency is not as
great as for the pixel indices, and a single probability distribution
can be used.

The green component is compressed in a similar fashion, but with
a twist. Since the color components are correlated, if the predicted
red component was much lower than the actual red component, it is
likely that the green prediction is also too low. Therefore it is bene-
ficial to compensate the prediction of the green component with the
error in red: predictiongreen = averagegreen + errorred. This is
possible since the red component has already been transmitted and
decoded. Likewise, the blue component is compressed using the
green error as a correction.

The base color for the second half of the block is compressed in the
same manner. However, in this case some of the surrounding pixels
will be located in the first half-block. To be able to recover these
pixels so we can predict from them, we have to send all parameters
for the first half-block before the parameters of the second half-
block are predicted. Hence the transmission order must be: flip bit,
diff bit, table values, base color for first half-block, pixel indices
for first half-block, base color for second half-block, pixel indices
for second half-block. The prediction of the second base color is
similar to that of the first half-block. The main difference is that the
second color is sometimes differentially encoded. Once we have
obtained our average red value (and multiplied by 31/255 to convert
to 5 bits), we must therefore subtract the red component of the first
base color. The result is then clamped to a value in [−4, 3], and
this is then used as prediction for the red differential. Just as in
the case with pixel indices each prediction value (such as -4) gets
its own probability distribution. The green and blue components of
the second colors are dealt with the same way.

One may assume that just using the base colors in the surround-
ing sub-blocks for prediction would give equal performance. We
tried this, but it did not work as well as basing the prediction on
the closest pixels as done in Figure 4. One explanation for this is
that while the base color is often very close to the average of the
the pixels in the sub-block, this is not always the case. Especially
when using exhaustive compression, the encoder may find that us-
ing a base color that is much darker than the pixels in the sub-block
works better than using the average color. Predicting the base color
in the adjacent sub-block form this outlier will not result in good
performance, but predicting from the resulting pixels of the same
sub-block will work fine.

3.3 Run Length Coding Addition

Some images contain very simple and repetitive data, such as a hor-
izontal line or a constant background color. In order to compress
these better we have added a run length system to our scheme. Af-
ter having compressed a block in the above-mentioned way, a num-
ber between 0 and 7 is also sent. The number represents how many
identical copies of the block follows. This saves a lot of bits for
simple repetitive data. One would think that it would be a great
burden for images with non-repetitive content, but in this case the
adaptive arithmetic encoder quickly learns that the probability for a
nonzero number is virtually zero, and very few extra bits are sent.
Highly structured blocks are unlikely to be repeated, and therefore
we only send the run-length symbol after blocks where all pixels of
a row have the same color.

4 Results

We have implemented the system and compressed a set of 64 im-
ages. The test set includes typical game textures, but also natural
images and synthetic images such as text.

The images were compressed to ETC1 using exhaustive compres-
sion. The resulting .pkm files were then packed with the proposed
method. They were also packed with ZIP and LZMA as references.
Two different ZIP tools were tried, the one built into Windows
Vista, and the ZIP coder in IZArc version 3.81 build 1550. Both
give similar results so we reported the best. For LZMA we used 7-
Zip version 9.20 using the “ultra” compression level and the default
setting for all other parameters. Gzip was also tried but gave results
similar to ZIP so we have not reported those.

We also compressed the original (non-compressed) images to JPEG
using ImageMagick version 6.5.8-3. The quality level was selected
for each image so that the quality in terms of PSNR matched that
of the ETC1 decompressed image as closely as possible.

Some of the images in the test set depicted objects in front of a
white background. Since the white parts of these images are very
simple to encode both for our proposed scheme (due to the run-
length coding) and for ZIP, we have reported a second set of results
excluding these white-background images.

The bit rate is reported as the number of bits per pixel averaged over
the entire test set.

ETC1 ETC1 ETC1 JPEG of equal
+ZIP +LZMA +proposed quality

all images (bpp) 2.85 2.60 2.21 2.25
nonwhite (bpp) 3.01 2.76 2.31 2.35

If no packing is used, ETC1 has a bit rate of 4.0 bits per pixel
(bpp). As can be seen in the table, ZIP lowers this to around 3
bpp on average for the nonwhite images, and LZMA gives around
2.8. However, the proposed method substantially reduces this to
around 2.3 bpp, a reduction of 16%. It is also interesting to see that
ETC1 + our proposed scheme gives a better result than JPEG when
measured at the same quality level. This is quite remarkable when
you consider that the first step is a fixed rate coder giving an equal
number of bits to every block. This will mean that bits in simple-
to-code blocks in ETC1 will be spent on coding noise, which will
contribute little to the PSNR value and which is typically hard to
compress. Yet caution should be used when interpreting these fig-
ures; they depend on which JPEG compressor you choose. Fur-
thermore, JPEG is no longer the state-of-the-art encoder for still
images: JPEG2000 [JPEG 2000], HD-photo [Microsoft 2006] and
even the intra part of the H.264 video standard [Süehring 2009] are
typically all more efficient. Still, we think that JPEG is relevant
since it is much used, and it is interesting to note that the proposed
solution can at least compete with transform based solutions.

If JPEG is used as the transport format, the textures will need to
be compressed on-the-fly to a texture compression format such as
ETC1 after download. To find out how much this transcoding will
lower the quality, we compressed the JPEG images to ETC1 and
measured the average mean square error. The result was an in-
creased error equivalent to a PSNR drop of 2.02 dB than if just
ETC1 encoding were used. Thus even if the JPEGs have equal
quality to the proposed scheme, after the transcoding there will be
a significant quality penalty. The transcoding used slow exhaustive
compression—fast transcoding will give an even higher penalty.

For the proposed method, the bits are spent according to the follow-
ing percentages:

RL flip diff table color index
all images 0.33% 2.43% 1.21% 10.02% 31.05% 54.97%
nonwhite 0.26% 2.45% 1.18% 9.85% 30.82% 55.44%

We need both the run-length data (marked with RL in the table)
and the index data itself to decode the indices. Thus the indices
are encoded using 0.33% + 54.97% = 55.3% of the 2.2 bpp data
for the “all images”-case, or about 61% of the original 2 bits per
pixel spent on index data. For comparison we compressed only the
index data using LZMA. The result was 70% of the original data;
hence the proposed metod gives a significant reduction for index
data. The corresponding figures for the nonwhite images are 64%
of the original data for the proposed method, and 74% for LZMA.

Our data base of images is not publicly available, so we also give
numbers for the top left 512×512 part of the ten first images in the
Kodak suite available at http://r0k.us/graphics/kodak/. The rate in
terms of bits per pixel with ETC1 plus the proposed method is 2.68,
2.28, 2.01, 2.38, 2.75, 2.55, 1.95, 2.73, 1.97 and 2.08 respectively,
averaging at 2.3 bpp. Zipping the compressed textures will give an
average of 3.1 bpp, and 2.8 bpp for LZMA. On this smaller database
JPEG fared a bit better at 2.2 bpp. In general, large smooth areas
such as a sky favors JPEG whereas high-contrast details such as text
favours our system.

Since the proposed scheme reaches a bit rate of 2.2-2.3 bpp, it is
tempting to compare it to 2 bpp codecs such as PVRTC. However,
such a comparison is not straightforward: First, PVRTC textures
can be zipped, bringing them down to 1.6 bpp for the nonwhite
images, and 1.5 bpp for all. Second, the proposed scheme could
of course be tried also for PVRTC. Third, a 2 bpp codec would
give benefits in terms of memory footprint and memory bandwidth
consumption compared to a 4 bpp solution, which is not true for the
proposed solution. Finally, the quality difference between a 4 bpp
codec and a 2 bpp codec is quite big, as can be seen in Figure 5.
Therefore we see our proposal as a complement to and not as a
replacement for 2 bpp codecs.

Figure 5: Left: original, 24 bpp. Middle: ETC1, 4 bpp. Right:
PVRTC, 2 bpp.

5 Conclusion and Limitations

We have presented a novel way of further packing compressed tex-
tures. The main idea is to predict the parameters by first predicting
the color values, and then see what parameters best fit these pre-
dicted colors. The improved prediction is especially noticeable for
pixel index data, which are known to be hard to compress [van Wa-
veren 2006]. We have applied the idea to the ETC1 texture codec
but expect that it will work fine with other codecs such as DXT-type
codecs and PVRTC. However, there are some limitations. The pro-
posed system only solves the problem of slow transmission time
over the network. Once it is unpacked, it does not improve the
memory footprint in the graphics memory, nor the number of GPU-
memory accesses over that of regular 4 bpp texture compression.
If this is the bottleneck, a lower-bit rate codec should be used in-
stead. Also, the unpacking of the data will take some time. The

decoding takes around 300 ms for a 512 × 512 texture with com-
pletely unoptimized code on a 1.33 GHz laptop, but if a lot of data
is transmitted even small decoding times will add up. ZIP is con-
siderably faster at around 60 ms for the same data. Also, arithmetic
coding is sequential by nature, although different textures can of
course be decoded in parallel. Hopefully, part or all of the decoding
time will be hidden by the time it takes to download the texture:
If downloading the texture takes more time than decompression,
the decoding can happen during download with minimum penalty.
Another limitation is that it is hard to reach very low bit rates for
transmission. JPEG can typically compress images down to 10%
of the original file size without noticeable artifacts. In our case we
have gone from 4 bpp (which equals 16% of the original 24 bpp)
down to 2.3 bpp or 9.6% of the original size, thus reaching the
same size as high-quality JPEG-compression. However, JPEG can
also provide reasonable quality images at 5% of the original data,
whereas our proposal does not give the possibility to trade quality
for bit rate. Thus, if really low bit rates are imperative, the texture
streaming approach of van Waveren is most likely a better solution.
However, if the highest possible quality is desired (no recompres-
sion and slow texture encoding), our solution has an advantage. If
one wants to further lower the bit rate while sticking to the proposed
solution, it is possible to change the parameters to values that are
cheap to encode. For instance, if pixel index = 2 will give the same
error against the original image as pixel index = 1, it makes sense
to select the cheaper one. A rate-distortion optimization of the im-
age would be possible for finding which parameter values lower the
bit rate the most while losing the least quality. This could be an
avenue for future work. Another possibility would be to make the
method more parallelizable/GPU friendly. Almost instant decom-
pression might be more valuable in real applications than maximum
compression efficiency.

Acknowledgements: Thanks to Andrey Norkin for interesting dis-
cussions on alternative binarizations, and to the reviewers for valu-
able input.

References

BEERS, A., AGRAWALA, M., AND CHADDA, N. 1996. Rendering
from Compressed Textures. In Proceedings of ACM SIGGRAPH
96, 373–378.

BPTC, 2010. ARB texture compression bptc. Available online:
www.opengl.org/registry/specs/ARB/texture compression bptc.txt.

CAMPBELL, G., DEFANTI, T. A., FREDERIKSEN, J., JOYCE,
S. A., LESKE, L. A., LINDBERG, J. A., AND SANDIN, D. J.
1986. Two Bit/Pixel Full Color Encoding. In Computer Graph-
ics (Proceedings of ACM SIGGRAPH 86), 215–223.

DELP, E. J., AND MITCHELL, O. R. 1979. Image Compression
using Block Truncation Coding. IEEE Transactions on Commu-
nications 2, 9, 1335–1342.

FENNEY, S. 2003. Texture Compression using Low-Frequency
Signal Modulation. In Graphics Hardware, ACM Press, 84–91.

INADA, T., AND MCCOOL, M. 2006. Compressed Lossless Tex-
ture Representation and Caching. In Graphics Hardware, 111–
120.

IOURCHA, K., NAYAK, K., AND HONG, Z., 1999. System and
Method for Fixed-Rate Block-Based Image Compression with
Inferred Pixel Values. US Patent 5,956,431.

JPEG, 2000. JPEG 2—ISO/IEC 15444-1:2005. Available on-
line:http://www.jpeg.org/jpeg2000/.

KNITTEL, G., SCHILLING, A. G., KUGLER, A., AND STRASSER,
W. 1996. Hardware for Superior Texture Performance. Comput-
ers & Graphics, 20, 4, 475–481.

MICROSOFT, 2006. HD Photo. Available online:
http:/www.microsoft.com/windows/windowsmedia/forpros/
wmphoto/default.aspx.

OWENS, J. D. 2005. Streaming Architectures and Technology
Trends. In GPU Gems 2. Addison-Wesley, 457–470.

RASMUSSON, J., STRÖM, J., WENNERSTEN, P., DOGGETT,
M., AND AKENINE-MÖLLER, T. 2010. Texture Compres-
sion of Light Maps using Smooth Profile Functions. In High-
Performance Graphics, 143–152.

STRÖM, J., AND AKENINE-MÖLLER, T. 2005. iPACKMAN:
High-Quality, Low-Complexity Texture Compression for Mo-
bile Phones. In Graphics Hardware, 63–70.

STRÖM, J., AND PETTERSSON, M. 2007. ETC2: Texture Com-
pression using Invalid Combinations. In Graphics Hardware,
49–54.

SÜEHRING, K. 2009. JM Software H.264/AVC.
http://iphome.hhi.de/suehring/tml/.

TORBORG, J., AND KAJIYA, J. 1996. Talisman: Commodity Real-
time 3D Graphics for the PC. In Proceedings of SIGGRAPH,
353–364.

VAN WAVEREN, J., 2006. Real-Time Texture Streaming and
Decompression. Id Software Technical Report, available at
http://software.intel.com/file/17248/.

WEINBERGER, M., SEROUSSI, G., AND SAPIRO, G. 1996.
LOCO-I: A Low Complexity, Context-Based, Lossless Image
Compression Algorithm. In Proc. IEEE Data Compression Con-
ference, Snowbird, Utah, March-April 1996.

WHEELER, F., 1996. Adaptive Arithmetic Coding Source Code.
available at http://www.cipr.rpi.edu/ wheeler/ac/.

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. 1987. Arith-
metic Coding for Data Compression. Communications of the
ACM 30, 6.

